Abstract

As the world expanded around us and increased the popularity of the Internet by sending receiving, uploading or downloading the high definition videos, it was necessary to use a good technology to reduce the size of the dedicated video and specialized high-quality one. If the videos are send or receive, they need a wide bandwidth to capture this amount of information in the video. Based on the above, the H.264/AVC is a good technology that gives great results for encoding and decoding videos. This technology was developed jointly by (ITU-T) International Telecommunication Union–Telecommunication Standardization, and (ISO) International Organization for Standardization.

Our work involves applying the encoding and decoding process of the standard using MATLAB (2013Ra) program. The work is focusing in inter frame prediction using the (IBBB) frame pattern. The video that was subjected to encoding and decoding processing was (Xylophone video name) with (240X320) size and (30f/sec) as a bit rate.
References

1. Darshankumar Shah, B.E, H.264 MOTION ESTIMATION AND MOTION
 COMPENSATION, Thesis of Master of Science in Electrical and Electronic Engineering at
 California State University, Sacramento, 2011.
2. By STEPHEN, A Fine Grained Many-Core H.264 Video Encoder, Thesis of Master of
 Science in Electrical and Computer Engineering in the University of California, THE UY LE B.S.,
3. YIM, Ka Yee, Video Decoder for H.264/AVC Main Profile, Power Efficient Hardware
 Design, A Thesis of Master of Philosophy in Electronic Engineering, Chinese University of Hong
 Kong, August 2011.
4. Samia Sharmin Shimu, Performance Analysis of H.264 Encoder for High-definition Video
 Transmission over Ultra-Wideband Communication Link, Thesis of Master of Science in the
 Department of Electrical and Computer Engineering ,University of Saskatchewan Saskatoon,
 May 2010.
5. Kermin Fleming, Chun-Chieh Lin, Jamey Hicks , H.264 Decoder: A Case Study in Multiple
 Design Points, 6th ACM/IEEE International Conference on Formal Methods and Models for
 Profile Decoder Complexity Analysis, IEEE Transactions on Circuits and Systems for Video
 Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.1, No.5, PP 119-138,
 October 2011.
8. Jignesh Patel, Haresh Suthar, Jagrut Gadit, Parul ,VHDL Implementation of H.264 Video
 1, No. 3, pp. 95-102, November 2012.
 Coding Standard, Overview and Introduction to the Fidelity Range Extensions, SPIE
 Conference on Applications of Digital Image Processing XXVII Special Session on Advances in
10. Li Man Ho, Variable Block Size Motion Estimation Hardware for Video Encoders, Thesis
 of Master of Philosophy in Computer Science and Engineering, The Chinese University of Hong
 Kong, November 2006.
12. Iain E. G. Richardson, H.264 and MPEG-4 Video Compression Video Coding for
 Next-generation Multimedia, John Wiley & Sons Ltd, First Edition, The Atrium, Southern Gate,

Index Terms

Computer Science

Circuits and Systems
Keywords

ITU-T, ISO, IBBB.