Abstract

This paper describes the impact of different camera movements, object motions and scene details on the video compression factor by using FFmpeg to compare the efficiency of Standards VP9, H.264 and H.265 at bit rates recommended for video hosting websites. The study showed that H.265 outperformed H.264 and VP9 in all six cases, where compression efficiency depended highly on the video content, as well as Video Coding Standard. FFmpeg showed to be an usable alternative for assessing objective visual quality.

References

1. Alliance for open media. 2018. The Big Picture. Available at: https://aomedia.org/about/ [5. 6. 2018].

5. FFmpeg. About FFmpeg. Available at: https://ffmpeg.org/about.html [30. 10. 2018].

6. FFmpeg. FFmpeg Documentation. Available at: https://ffmpeg.org/ffmpeg.html [23. 10. 2018].

7. FFmpeg. FFmpeg Filters Documentation. Available at: https://ffmpeg.org/ffmpeg-filters.html [23. 6. 2018].

Index Terms

Computer Science

Image Processing

Keywords

Video compression efficiency, FFmpeg, H.264, H.265, VP9, PSNR, SSIM