Model for Predicting the Risk of Kidney Stone using Data Mining Techniques

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 182

Number 38

Year of Publication: 2019

Authors:

10.5120/ijca2019918404

Abstract

This paper focused on the development of a predictive model for the classification of the risk of kidney stones in Nigerian using data mining techniques based on historical information elicited about the risk of kidney stones among Nigerians. Following the identification of the risk factors of kidney stone from experienced endocrinologists, structured questionnaires were used to collect information about the risk factors and the associated risk of kidney stones from selected respondents.

The predictive model for the risk of kidney diseases was formulated using three (3) supervised machine learning algorithms (Decision Tree, Multi-layer perception and Genetic Algorithm) following the identification of relevant features. The predictive model was simulated using the Waikato Environment for Knowledge Analysis (WEKA) environment; and the model was validated using historical dataset of kidney stone risk via performance metrics: accuracy, true positive rate, precision and false positive rate.
The paper concluded that the multi-layer perceptron had the best performance overall using the 33 initially identified variables by the endocrinologists with an accuracy of 100%. The performance of the genetic programming and multi-layer perceptron algorithms used to formulate the predictive model for the risk of kidney stones using the 6 variables outperformed the model formulated using the 6 variables identified by the C4.5 decision trees. The variables identified by the C4.5 decision trees algorithm were: obese from childhood, eating late at night, BMI class, family history of hypertension, taking coffee and sweating daily. In conclusion, the multi-layer perceptron algorithm is best suitable for the development of a predictive model for the risk of kidney stones.

References

 Index 7(2), 629 - 634.
 Methods in Cardiovascular Disease Prediction. International Journal of Computer Science and
 Technology (IJCST) 2(2), 304 – 308.
 Algorithms as Expert Systems in Medical Diagnosis (Asthma). In Advances in Computer
 Science and Information Technology, Berlin, Heidelberg.
19. Ivanciuc, O. 2008. WEKA Machine Learning for Predicting the Phospholipidosis Inducing
 Obstructive Pulmonary and Pneumonia Diseases Diagnosis using Neural Networks and
 using Data Mining Classification Techniques. International Journal of Computer Applications
 47(10): 44 – 48
 Stones (Nephrolithiasis), PMC Journal of US National Library of Medicine and National Institute
 of Health, July 31, 2015
 Soc Nephrol Vol. 9, :1645
 Approach 2nd ed. OUP oxford University Press
 PA: WB Saunders; 1363-1371
28. Taylor E.N and Curhan G.C. 2013. Dietary calcium from dairy and nondairy sources,
 States. Eur Urol; Vol.62, 160
 Aspects on Kidney Stones: A Systematic Review and Meta-Analysis. Open Access Scientific
 Reports 1(12), 1 – 5
32. Kaladhar D, Krishna Apparao Rayavarapu K and Vadlapudi V 2012. Statistical and Data
 Mining Aspects on Kidney Stones: A Systematic Review and Meta-analysis Department of
 Biochemistry/Bioinformatics, GIS, GITAM University, Visakhapatnam-530045, India

Index Terms

Computer Science Data Mining

Keywords

Kidney Stone Risk Factors, C4.5, Prediction, Classification, Decision Trees, Genetic Algorithms, Multilayer Perception