Introducing Cloud computing to the globe has changed many conceptual and infrastructural bases for today’s and tomorrow’s computing. It has made the global thinking migrates rapidly towards cloud based architecture. Clouds bring out a variety of benefits including computing resources configurability, cost controllability, sustainability, mobility and service flexibility. However, the new concepts that clouds introduce such as outsourcing, multi-tenancy, and resource sharing create new challenges and raise a broad range of security and privacy issues. Cryptography is the art-of-science of protecting data privacy by converting it to unreadable format using standard mathematical techniques. This paper provides a comprehensive study for eight of the most common symmetric cryptographic algorithms, namely, DES, 3DES, Blowfish, Twofish, RC2, RC5, RC6 and AES. A comparative analysis based on the structure of the algorithm, encryption and decryption times, throughput and memory utilization has been performed to examine the performance of each algorithm.
1. NIST SP 800-145, “A NIST definition of cloud computing”,
 Prentice Hall, December 2006.
3. H. Feistel, "Cryptography and computer
 Department of Commerce, January 1977.
6. D. Coppersmith · D. B. Johnson · S. M. Matyas, “A proposed mode for triple-DES
8. B. Schneier, "Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish),"
 Fast Software Encryption: Second International Workshop, Leuven, Belgium, Proceedings,
9. L. Knudsen, V. Rijmen, R. Rivest, and M. Robshaw, "On the Design and Security of
 RC2", Fast Software Encryption, 5th International Workshop, FSE '98, Paris, France, March
 128-bit block cipher.” In AES Round 1 Technical Evaluation CD-1: Documentation. National
 Institute of Standards and Technology NIST, August 1998. See http://www. nist.gov/aes
12. A. Mandal, C, Parakash and A. Tiwari, “Performance evaluation of cryptographic
 algorithms: DES and AES”, IEEE Students' Conference on Electrical, Electronics and Computer
 Science, pp. 1-5, 2012.
13. G. Singh and Supriya, “A study of encryption algorithms (RSA, DES, 3DES and AES) for
 April 2013.
17. B. Schneier and D. Whiting, “A performance comparison of the five AES finalists.”
18. Z. Hercigonja and D. gimnazija, “Comparative analysis of cryptographic algorithms.”
 Algorithms", International Journal of Computer Science and Network Security, vol.8 no.12,
 December 2008.

Index Terms
Keywords

Cloud Computing, DES, 3DES, Blowfish, Twofish, RC2, RC5, RC6, AES