CFP last date
21 July 2025
Reseach Article

AI-Powered Detection of Financial Deception: Uncovering Credit Card Fraud

by Krati Lodha, Katib Showkat Zargar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 13
Year of Publication: 2025
Authors: Krati Lodha, Katib Showkat Zargar
10.5120/ijca2025925257

Krati Lodha, Katib Showkat Zargar . AI-Powered Detection of Financial Deception: Uncovering Credit Card Fraud. International Journal of Computer Applications. 187, 13 ( Jun 2025), 39-46. DOI=10.5120/ijca2025925257

@article{ 10.5120/ijca2025925257,
author = { Krati Lodha, Katib Showkat Zargar },
title = { AI-Powered Detection of Financial Deception: Uncovering Credit Card Fraud },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2025 },
volume = { 187 },
number = { 13 },
month = { Jun },
year = { 2025 },
issn = { 0975-8887 },
pages = { 39-46 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number13/ai-powered-detection-of-financial-deception-uncovering-credit-card-fraud/ },
doi = { 10.5120/ijca2025925257 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-06-21T01:57:02.460650+05:30
%A Krati Lodha
%A Katib Showkat Zargar
%T AI-Powered Detection of Financial Deception: Uncovering Credit Card Fraud
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 13
%P 39-46
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The surge in digital financial services has created new vulnerabilities to fraud, requiring advanced detection systems. Conventional fraud identification methods struggle with real-time processing, particularly when analyzing severely imbalanced datasets. This study introduces a multi-faceted AI framework combining tree-based boosting algorithms (LightGBM, XGBoost, CatBoost) with neural computation to improve fraud identification. Utilizing the creditcard.csv dataset containing 284,807 transactions where only 0.17% represents fraudulent activities, 1, 16 specialized techniques were implemented rebalancing approaches and parameter optimization to enhance detection performance. Results demonstrate that tree-based boosting approaches excel in precision metrics, lowering false alerts, while neural computation achieves superior sensitivity and discrimination capability 3, 4, 5. Specifically, XGBoost reached 88.17% precision with 97.25% area under curve, 4 CatBoost maintained balanced performance indicators, 5 and the neural architecture delivered 82.65% sensitivity with 97.95% discrimination capability 49. These outcomes illustrate how computational intelligence enhances financial security protocols, reducing unauthorized activities and minimizing institutional risk exposure.

References
  1. S. K. Hashemi, S. L. Mirtaheri, and S. Greco. 2023. Fraud detection in banking data by machine learning techniques. IEEE Access, 11, 3034–3042.
  2. S. Ahmed and R. Patel. 2024. Gradient boosting models for financial fraud detection: A comparative study. Journal of Financial Security, 42(3), 123–135.
  3. L. Brown and K. Lee. 2022. Machine learning techniques for fraud detection in banking. International Journal of Artificial Intelligence Applications, 15(2), 89–101.
  4. Y. Chen and H. Zhang. 2025. Optimizing fraud detection using XGBoost and LightGBM. IEEE Transactions on Cybersecurity, 30(4), 234–250.
  5. J. Doe, A. Smith, and K. Williams. 2021. Improving fraud classification using Random Forests and SVM. In Proceedings of the Financial Data Science Conference, 7(1), 56–67.
  6. R. Ghosh, P. Kumar, and D. Verma. 2025. Deep learning approaches in fraud detection: Current trends and challenges. Neural Computing and Applications, 48(5), 789–803.
  7. B. Kim and J. Park. 2025. Interpretability challenges in deep learning-based fraud detection models. Artificial Intelligence in Finance Journal, 22(6), 450–470.
  8. J. Smith, D. Johnson, and C. Roberts. 2023. Rule-based fraud detection vs. AI-driven methods: A performance comparison. Financial Data Analytics Review, 19(3), 200–215.
  9. T. Williams, L. Anderson, and S. Miller. 2024. Hybrid models combining machine learning and deep learning for fraud prevention. Journal of Computational Finance, 35(2), 145–165.
  10. A. Dal Pozzolo, et al. 2014. Learned lessons in credit card fraud detection from a practitioner perspective. Expert Systems with Applications, 41(10), 4915–4928.
  11. A. C. Bahnsen, D. Aouada, and B. Ottersten. 2016. Example-dependent cost-sensitive decision trees. Expert Systems with Applications, 42(19), 6609–6619.
  12. S. K. Hashemi, S. L. Mirtaheri, and S. Greco. 2023. Fraud Detection in Banking Data by Machine Learning Techniques. IEEE Access, 11, 3034–3043.
  13. N. S. Halvaiee and M. K. Akbari. 2014. A novel model for credit card fraud detection using artificial immune systems. Applied Soft Computing, 24, 40–49.
  14. A. C. Bahnsen, et al. 2016. Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134–142.
  15. K. Randhawa, et al. 2018. Credit card fraud detection using AdaBoost and majority voting. IEEE Access, 6, 14277–14284.
  16. U. Porwal and S. Mukund. Credit card fraud detection in e-commerce: An outlier detection approach. arXiv preprint arXiv:1811.02196, 2018.
  17. H. Wang, et al. An ensemble learning framework for credit card fraud detection. In Proc. IEEE SmartWorld Conf., pages 94–98, 2018.
  18. F. Itoo, et al. Comparison of logistic regression, Naive Bayes, and KNN for fraud detection. International Journal of Information Technology, 13(4):1503–1511, 2021.
  19. T. A. Olowookere and O. S. Adewale. Fraud detection using cost-sensitive meta-learning. Scientific African, 8:e00464, 2020.
  20. A. Altyeb, et al. Optimized LightGBM for credit card fraud. IEEE Access, 8:25579–25587, 2020.
  21. K. Xiong, et al. A hybrid deep learning model for online fraud detection. In Proc. IEEE ICCECE, pages 431–434, 2021.
  22. T. Vairam, et al. Evaluation of Naive Bayes and voting classifiers. In Proc. IEEE ICACCS, pages 602–608, 2022.
  23. P. Verma and P. Tyagi. Supervised machine learning algorithms in fraud detection. ECS Transactions, 107(1):7189, 2022.
  24. J. Zou, et al. Credit card fraud detection using autoencoder neural networks. arXiv preprint arXiv:1908.11553, 2019.
  25. D. Almhaithawi, et al. Cost-sensitive fraud detection using SMOTE. SN Applied Sciences, 2(9):1–12, 2020.
  26. J. Cui, et al. Learning transaction cohesiveness. In Proc. CDS, pages 1–5, 2021.
  27. M. Rakhshaninejad, et al. Ensemble-based fraud detection using voting strategy. Computer Journal, 65(8):1998–2015, 2022.
  28. A. H. Victoria and G. Maragatham. Hyperparameter tuning using Bayesian optimization. Evolving Systems, 12(1):217–223, 2021.
  29. H. Cho, et al. Bayesian optimization for tuning neural networks. IEEE Access, 8:52588–52608, 2020.
  30. F. N. Khan, et al. Deep neural network and ensemble learning for fraud. In Proc. IEEE TENSYMP, pages 114–119, 2020.
  31. W. Liang, et al. Predicting stability using LightGBM/XGBoost. Mathematics, 8(5):765, 2020.
  32. S. B. Jabeur, et al. Corporate failure prediction with CatBoost. Technological Forecasting & Social Change, 166:120658, 2021.
  33. J. Hancock and T. M. Khoshgoftaar. Medicare fraud detection using CatBoost. In Proc. IEEE IRI, pages 97–103, 2020.
  34. B. Dhananjay and J. Sivaraman. Heart rate classification using CatBoost. Biomedical Signal Processing and Control, 68:102610, 2021.
  35. Y. Chen and X. Han. CatBoost for fraud detection. In Proc. IEEE ICCECE, pages 176–179, 2021.
  36. A. Goyal and J. Khiari. Weighted majority vote for imbalanced data. In Proc. IEEE IJCNN, pages 1–8, 2020.
  37. A. Roy, et al. Deep learning for detecting fraud in credit card transactions. In Proc. IEEE SIEDS, pages 129–134, 2018.
  38. M. S. Delgosha, et al. Big data analytics in banking. Journal of Enterprise Information Management, 34(6):1577–1596, 2021.
  39. M. Puh and L. Brkić. Fraud detection using ML algorithms. In Proc. IEEE MIPRO, pages 1250–1255, 2019.
  40. J. Nanduri, et al. Multi-layer fraud detection in e-commerce. In Proc. Springer CDS, pages 556–570, 2020.
  41. H. Feng. Ensemble learning in fraud detection. In Proc. CDS Conf., pages 7–11, 2021.
  42. N. Kumaraswamy, et al. Healthcare fraud data mining. Perspectives in Health Information Management, 19(1):1, 2022.
  43. E. F. Malik, et al. Hybrid ML architecture for fraud. Mathematics, 10(9):1480, 2022.
  44. K. Gupta, et al. ML-based fraud detection – A review. In Proc. ICAAIC, pages 362–368, 2022.
  45. R. Almutairi, et al. Analyzing fraud detection using ML. In Proc. IEEE IEMTRONICS, pages 1–8, 2022.
  46. D. P. Kingma and J. Ba. Adam optimizer. arXiv preprint arXiv:1412.6980, 2014.
  47. H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering (TKDE), 21(9):1263–1284, 2009.
  48. Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. CRC Press, 2012.
  49. I. Goodfellow, et al. Deep Learning. MIT Press, 2016.
  50. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
  51. J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189–1232, 2001.
  52. S. M. Lundberg and S.-I. Lee. SHAP values. In Proc. NIPS, 2017.
  53. M. T. Ribeiro, S. Singh, and C. Guestrin. LIME: Local interpretable model-agnostic explanations. In Proc. KDD, 2016.
  54. Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang. Cost-sensitive boosting. In Proc. ICML, pages 1–8, 2007.
  55. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.
  56. H. Han, W. Y. Wang, and B. H. Mao. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In Proc. LNCS, vol. 3644, pages 878–887, 2005.
  57. H. Kaur and S. K. Wasan. Empirical study on credit card fraud detection. International Journal of Computer Science and Engineering (IJCSE), 4(2):23–32, 2006.
  58. M. Buda, A. Maki, and M. A. Mazurowski. A systematic study of the class imbalance problem in convolutional neural networks. Pattern Recognition, 77:43–52, 2018.
  59. M. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Mazzer, and G. Bontempi. Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557:317–331, 2021.
  60. N. Pozzolo, O. Caelen, Y.-A. Le Borgne, and G. Bontempi. Credit card fraud detection: A realistic modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems, 29(8):3784–3797, 2018.
Index Terms

Computer Science
Information Sciences

Keywords

Transaction Fraud Detection Computational Intelligence Neural Computation LightGBM XGBoost CatBoost Imbalanced Learning Financial Cyber security