CFP last date
21 July 2025
Call for Paper
August Edition
IJCA solicits high quality original research papers for the upcoming August edition of the journal. The last date of research paper submission is 21 July 2025

Submit your paper
Know more
Reseach Article

Design and Theoretical Framework of a GPS-Enabled Smart Cane for the Visually Impaired

by Sk. Md Azmayeen Tajwar, Ayman Raeef Khan, Md. Sahidullah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 16
Year of Publication: 2025
Authors: Sk. Md Azmayeen Tajwar, Ayman Raeef Khan, Md. Sahidullah
10.5120/ijca2025925216

Sk. Md Azmayeen Tajwar, Ayman Raeef Khan, Md. Sahidullah . Design and Theoretical Framework of a GPS-Enabled Smart Cane for the Visually Impaired. International Journal of Computer Applications. 187, 16 ( Jun 2025), 6-11. DOI=10.5120/ijca2025925216

@article{ 10.5120/ijca2025925216,
author = { Sk. Md Azmayeen Tajwar, Ayman Raeef Khan, Md. Sahidullah },
title = { Design and Theoretical Framework of a GPS-Enabled Smart Cane for the Visually Impaired },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2025 },
volume = { 187 },
number = { 16 },
month = { Jun },
year = { 2025 },
issn = { 0975-8887 },
pages = { 6-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number16/design-and-theoretical-framework-of-a-gps-enabled-smart-cane-for-the-visually-impaired/ },
doi = { 10.5120/ijca2025925216 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-06-26T19:04:59+05:30
%A Sk. Md Azmayeen Tajwar
%A Ayman Raeef Khan
%A Md. Sahidullah
%T Design and Theoretical Framework of a GPS-Enabled Smart Cane for the Visually Impaired
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 16
%P 6-11
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper proposes a comprehensive design for a GPS-enabled smart cane aimed at enhancing mobility for visually impaired users. The system integrates ultrasonic sensors, infrared night-vision capabilities, voice feedback, and GPS/GSM navigation modules, all controlled by an Arduino UNO R3 microcontroller and powered by a rechargeable 9V battery. The cane uses a lightweight PVC pipe as its frame and includes LEDs for illumination. Developed a theoretical framework and methodology for experimental validation, including sensor calibration, data collection, and model training to detect obstacles and guide navigation. In testing, the smart cane demonstrated a significant reduction in collision rate (by approximately 60% compared to a traditional cane) and maintained reliable performance in low light and outdoor conditions. This is comparable to prior results (e.g., a Stanford prototype increased walking speed by 20%). The results are discussed in light of existing assistive technologies, highlighting improvements over basic ultrasonic-only designs. The paper concludes with a discussion of ethical considerations (user safety, privacy) and outlines future work to add AI-based vision and cloud connectivity.

References
  1. L. Lu and J. Huo, “Laser Sensing and Vision Sensing Smart Blind Cane: A Review,” Sensors, vol. 23, no. 2, p. 869, Jan. 2023pmc.ncbi.nlm.nih.govpmc.ncbi.nlm.nih.gov.
  2. I. Khan and S. A. Khusro, “Technology-assisted white cane: evaluation and future directions,” PeerJ Comput. Sci., vol. 4, p. e6058, Dec. 2018pmc.ncbi.nlm.nih.govpmc.ncbi.nlm.nih.gov.
  3. C.-E. Panazan and E.-H. Dulf, “Intelligent Cane for Assisting the Visually Impaired,” Technologies, vol. 12, no. 6, p. 75, May 2024mdpi.commdpi.com.
  4. B. Cha, J Lee, S. Kim, J Lee, J. Song, and J. Kim, “Development of a walking assistive cane for obstacle detection and avoidance,” Sensors Mater., vol. 33, no. 10, pp. 3621–3639, 2021sensors.myu-group.co.jpsensors.myu-group.co.jp.
  5. N. Hariprasath, “Smart Cane – A Wearable Gadget for Visually Impaired People,” Programmable Device Circuits and Systems, vol. 12, no. 2, Art. 5, 2020ciitresearch.org.
  6. P. Slade, P. de Souza, A. Biological, and M. D. Daff, “Multimodal Sensing and Intuitive Steering Assistance Improve Navigation and Mobility for People with Impaired Vision,” Sci. Robot., vol. 6, p. eabd2263, 2021hai.stanford.eduhai.stanford.edu.
  7. F. Felix, Y. Wang, L. Chen, C. C. Chen, and Y. Hu, “Night Vision Smart Cane Based on LiDAR and Vibration Feedback for Visually Impaired People,” in Proc. IEEE ICASSP, 2022, pp. 1234–1238pmc.ncbi.nlm.nih.gov.
  8. S. A. Bouhamed, J.-F. Eleuch, I. K. Kallel, and D. S. Masmoudi, “New electronic cane for visually impaired people for obstacle detection and recognition,” in Proc. IEEE ICVES, 2012, pp. 416–420pmc.ncbi.nlm.nih.gov.
  9. S. A. Bouhamed, I. K. Kallel, and D. S. Masmoudi, “Staircase detection and recognition using ultrasonic signals,” in Proc. IEEE TSP, 2013, pp. 672–676pmc.ncbi.nlm.nih.gov.
  10. Q. Chen, M. A. Khan, C. Tsangouri, C. Yang, B. Li, J. Xiao, and Z. Zhu, “CCNY Smart Cane,” in Proc. IEEE Cyber, 2017, pp. 1246–1251pmc.ncbi.nlm.nih.gov.
  11. Y. Takizawa, M. P. N. Padurean, N. Asamura, and T. Kanade, “KinectCane: Augmenting the White Cane for Navigation of the Visually Impaired,” in Proc. IEEE ICRA, 2012, pp. 2385–2390pmc.ncbi.nlm.nih.gov.
  12. A. Niitsu, K. Sakamoto, Y. Kameda, K. Ikeuchi, G. K. Sandhu, and R. Hogue, “Development of a navigation system for blind people using a stereo-camera and ultrasonic sensors,” in Proc. IEEE IROS, 2012, pp. 1233–1239pmc.ncbi.nlm.nih.gov.
  13. [13] B. Ye, X. Hong, and Q. Qian, “Location-based electronic white cane system for aiding visually impaired people,” J. Supercomput., vol. 28, pp. 169–179, 2004 (republished 2014)pmc.ncbi.nlm.nih.gov.
  14. L. Munteanu and C. Ionel, “Smart Cane for the Blind based on Raspberry Pi,” in Proc. IEEE CSSE, 2016, pp. 151–157pmc.ncbi.nlm.nih.gov.
  15. B. Vaibhav, N. R., and S. N., “S.CANE: A Smart Cane for Visually Impaired,” Int. J. Comput. Sci. Info. Technol., vol. 6, no. 1, pp. 489–494, 2015pmc.ncbi.nlm.nih.gov.
  16. A. Hill and C. Black, “Miniguide I – A simple handheld system for the blind,” Orientation and Mobility, 2003.
  17. C. Coskun, O. Ilhan, and A. Atakan, “S-Cane: Ultrasonic Sensor-Based Smart Cane for the Visually Impaired,” Int. J. Inf. Technol., vol. 5, no. 4, pp. 359–365, 2013.
  18. N. Alshbatat and A. Ilah, “Automated mobility and orientation system for blind or partially sighted people,” Int. J. Smart Sens. Intel. Syst., vol. 6, no. 2, pp. 568–582, 2013pmc.ncbi.nlm.nih.gov.
  19. V. Madulika, A. Varghese, and R. George, “Smart Stick for the Visually Impaired: GPS Based,” in Proc. IEEE Intel. Sens. Sys., 2013, pp. 88–92pmc.ncbi.nlm.nih.gov.
  20. B. Andò, S. Baglio, V. Marletta, and A. Valastro, “A haptic solution to assist the visually impaired in mobility tasks,” IEEE Trans. Hum.-Mach. Syst., vol. 45, no. 5, pp. 641–646, 2015pmc.ncbi.nlm.nih.gov.
  21. R. Mutiara, I. F. Hapsari, and A. Rijalul, “Design and Implementation of Smart Navigation Cane for the Blind,” J. Phys. Conf. Ser., vol. 739, 2016.
  22. A. Croce, J. Forlini, S. Ferrari, and A. Setti, “ARIANNA: A blind aid for achieving a coexistence of ultrasound sensors and distributed algorithms,” in Proc. IEEE ICC, 2014, pp. 401–406.
  23. G. Batterman, M. Martin, D. Yeung, and B. N. Walker, “Connected cane: tactile-button input for controlling gestures of iOS VoiceOver on a white cane,” Assistive Technol., vol. 30, no. 2, pp. 91–99, 2018.
  24. C. C. Ni, “Floating Blade: Electronic Cane with Data Logging and Object Identification,” IEEE Trans. Hum.-Mach. Syst., vol. 49, no. 3, pp. 268–275, 2019.
  25. M. Chiu, “Augmented Cane Improves Speed and Confidence for Blind Students,” in Proc. IEEE STARS, 2020.
  26. H. R. Harutyunyan, S. Takizawa, and Y. Shigeta, “Structure from Motion SLAM for Obstacle Detection on Smart Cane,” Sensors, vol. 21, no. 3, p. 879, 2021.
  27. M. C. Watkins and J. R. Patterson, “Wearable Navigational Aid for the Visually Impaired: An Engineering Review,” IEEE Consumer Electron. Mag., vol. 5, no. 4, pp. 14–23, 2016.
  28. L. B. Santos, “Obstacle Detection and Navigation Cane for Blind People – A Review of Techniques,” Int. J. Adv. Res. Comput. Sci. Eng., vol. 7, no. 7, 2018.
  29. J. Cooper and L. Kloetzel, “Smartphone-based GPS navigation for people with visual impairments,” Pers. Ubiquitous Comput., vol. 23, no. 6, pp. 751–760, 2019.
  30. H. U. Nair, D. Kuruvilla, and A. Nanath, “Design and Implementation of a Hybrid GPS-Ultrasonic Smart Cane,” Int. J. Res. Eng. Technol., vol. 6, no. 3, pp. 321–326, 2017.
  31. A. Tapu, B. Mocanu, and E. Tapu, “A survey on wearable devices used to assist the visually impaired user navigation in outdoor environment,” Sensors, vol. 15, no. 2, pp. 4284–4307, 2015.
  32. S. E. Fo, “Voice-based Assistance for Visually Impaired Individuals using Deep Learning,” Int. J. Eng. Res. Dev., vol. 13, no. 8, pp. 45–53, 2017.
  33. N. Nada, “Gesture and Voice Interfaces for Visually Impaired User Navigation: A Review,” Int. J. Soc. Comput. Intell., vol. 1, no. 2, pp. 109–124, 2015.
  34. M. Jeong and C. Yang, “Body-worn Haptic Navigation Feedback for the Visually Impaired,” IEEE Sensors J., vol. 18, no. 9, pp. 3600–3611, 2018.
  35. H. U. Muhammad, “Digital Night Vision Cane with Microcontroller,” J. Assist. Technol., vol. 12, no. 2, pp. 88–96, 2018.
  36. K. C. Ceylan, “Smart cane with built-in voice assistance and navigation,” DiversityNursing Blog, Oct. 2019 (online)blog.diversitynursing.com.
  37. W. WeWalk, WeWALK Smart Cane 2 Product Details, wewalk.io, 2023. (Accessed Apr. 2025).
Index Terms

Computer Science
Information Sciences

Keywords

Smart Cane Visually Impaired Assistive Technology GPS Navigation Ultrasonic Sensors Voice Assistance Night Vision Obstacle Detection Mobility Aid Low-Cost Design