CFP last date
20 August 2025
Reseach Article

Domain-Specific Legal Judgment Summarizer using Latent Dirichlet Allocation

by Farhana Rizvi, Muhammad Daud Awan, Malik Sikandar Hayat Khiyal, Amber Sarwar Hashmi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 17
Year of Publication: 2025
Authors: Farhana Rizvi, Muhammad Daud Awan, Malik Sikandar Hayat Khiyal, Amber Sarwar Hashmi
10.5120/ijca2025925230

Farhana Rizvi, Muhammad Daud Awan, Malik Sikandar Hayat Khiyal, Amber Sarwar Hashmi . Domain-Specific Legal Judgment Summarizer using Latent Dirichlet Allocation. International Journal of Computer Applications. 187, 17 ( Jul 2025), 53-59. DOI=10.5120/ijca2025925230

@article{ 10.5120/ijca2025925230,
author = { Farhana Rizvi, Muhammad Daud Awan, Malik Sikandar Hayat Khiyal, Amber Sarwar Hashmi },
title = { Domain-Specific Legal Judgment Summarizer using Latent Dirichlet Allocation },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2025 },
volume = { 187 },
number = { 17 },
month = { Jul },
year = { 2025 },
issn = { 0975-8887 },
pages = { 53-59 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number17/domain-specific-legal-judgment-summarizer-using-latent-dirichlet-allocation/ },
doi = { 10.5120/ijca2025925230 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-07-09T01:07:29.332298+05:30
%A Farhana Rizvi
%A Muhammad Daud Awan
%A Malik Sikandar Hayat Khiyal
%A Amber Sarwar Hashmi
%T Domain-Specific Legal Judgment Summarizer using Latent Dirichlet Allocation
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 17
%P 53-59
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Digitalization has brought about significant opportunities and challenges for Law, IT researchers for a balanced and quality summary. A statistical and topic modeling-based strategy is presented to extract an automatic summary from the PLD for legal judgments. LDA is the measuring method to capture the most important topics, rank the summary according to the final section of the legal judgments. Summarizing legal judgments involves leveraging LDA’s topic modeling to update the summarization process. To generate a quality summary using the evaluating metrics. These results show the role of the proposed algorithm in a better way the proposed algorithm is competent in computational processing and has an understandable method for implementing the PLD judgments.

References
  1. Moratanch and S Chitrakala. 2016. A survey on abstractive text summarization. In Circuit, Power and Computing Technologies (ICCPCT),2016 International Conference on, pages 1–7. IEEE
  2. Chaudhary, Nidhi, and Shalini Kapoor, Key Phrase Extraction Based Multi-Document Summarization, International Journal of Engineering Trends and Technology.13(4) (2014) 148–53.https://doi.org/10.14445/22315381/ijett-v13p232.
  3. Gambhir, Mahak and Vishal Gupt, Recent AutomaticText Summarization Techniques: A Survey, Artificial Intelligence Review .47 (1)(2016)166.Doi:10.1007/s10462-016-9475
  4. Allahyari, Mehdi, Seyedamin Pouriyeh, Mehdi Assefi , Saeid Safaei, Elizabeth D, Juan B, and Krys Kochut,Text Summarization A Techniques Brief Survey, International Journal of Advanced Computer Science and Applications.8(10)(17).Doi:10.14569/ijacsa.2017.081052
  5. Mekuria, Getahun Tadesse, and Aniket S Jagtap, Automatic Amharic. Text Summarization Using NLP Parser, International Journal of Engineering Trends and Technology. 53(1) (2017) 52–58. https://doi.org/10.14445/22315381/ijett-v53p210
  6. Nenkova and Kathleen McKeown. 2012. A survey of text summarization techniques. In Mining Text Data, pages 43–76. Springer.
  7. Radev, Dragomir R., Simone Teufel, Horacio Saggion, Wai Lam, John Blitzer, Hong Qi Arda Çelebi, Danyu Liu and Elliott Drabek Evaluation Challenges in Large-Scale Document Summarization, Proceedings of the 41st Annual Meeting on Association for Computational Linguistics- ACL '03. (2003). Doi:10.3115/1075096.1075144
  8. Nenkova, A.; and Vanderwende, L. 2005. The impact of frequency on summarization. Microsoft Research, Redmond, Washington Tech. Rep. 101.
  9. Belwal, R. C., Rai, S., & Gupta, A. (2021). Text summarization using topic-based vector space model and semantic measure. Information Processing & Management, 58(3),102536. https://doi.org/10.1016/j.ipm.2021.102536
  10. Filippo Galgani, Paul Compton, and Achim 2015Lexa: Building knowledge bases for automatic legal citation classification Expert Systems with Applications, 42(17):6391– 6407.
  11. Filippo Galgani, Paul Compton, and Achim Hoffmann.2012b. combining different summarization techniques for legal text In Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data, pages 115–123. Association for Computational Linguistics.
  12. See et al. 2017; Nikolov et al. 2018; Narayan et al. 2018; Chu and Liu 2019
  13. See et al. 2017; Narayan et al. 2018; Liu and Lapata 2019.
  14. N. Moratanch et al “A survey on abstractive text summarization” Conference:2016International Conference on Circuit, Power and Computing Technologies (ICCPCT)
  15. T. Cai, M. Shen, H. Peng, L. Jiang, and Q. Dai, “Improving transformer with sequential context representations for abstractive text summarization,” Natural Language Processing and Chinese Computing, pp.512–524, 2019
  16. J. Wang, Y. Hou, J. Liu, Y. Cao, and C. Y. Lin, “A statistical framework for product description generation,” in Proceedings of the Eighth International Joint Conference on Natural Language Processing, Taiwan, China, pp. 187–192
  17. Torres-Moreno,Juan-Manuel, Automatic Text Summarization: Some Important Concepts, AutomaticText Summarization. (2014) 23–52 Doi:10.1002/9781119004752. ch2.
  18. Kiyoumarsi, Farshad, Evaluation of Automatic Text Summarizations on Human Summaries, Based, Procedia -Social and Behavioral Sciences. 192 (2015)83–91. Doi: 10.1016/j.sbspro.2015.06.013
  19. http://www.keralawyer.com/asp/sub.asp?page Val=judgement
  20. Natural Language Processing With spaCy in Python – Real Python Access time: 12:23:45 Am
  21. Case Summarizer: A System for Automated Summarization of Legal Texts Seth Polsley Pooja Jhunjhunwala∗ Department of Computer Science and Engineering, Texas A&M University spolsley,pj861992, huangrh@cse.tamu.edu
  22. D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet allocation”. Journal of Machine Learning Research Vol.3 (2003) 993-1022.
  23. ijais12-450384.pdf Access time: 12:12:34 am
  24. Extractive Summarization of Bible Data using Topic Modeling (ijettjournal.org)Access time: 10:12:34am
  25. Gupta, Vishal and Gurpreet Singh Lehal, A Survey of Text Summarization Extractive Techniques, Journal of Emerging Technologies in Web Intelligence.2(3) (2010).Doi:10.4304/jetwi.2.3.258-268 .
  26. Lin CY. Rouge: a package for automatic evaluation of summaries. In: Text summarization branches out;2004, Jul. p.74–81
  27. Saziyabegum S, Sajja PS. Review on text summarization evaluation methods. Indian J Comput Sci Eng. 2017 ;8(4):497500.
  28. Extractive summarization of Malayalam documents using latent Dirichlet allocation: An experience (degruyter.com)
  29. Blei, David M, Probabilistic Topic Models, Communications of the ACM.55(4) (2012) 77– 84 .Doi:10.1145/21]33806.2133826
  30. Griffiths,Thomas L.andMark Steyvers A Probabilistic Approach to Semantic Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society. (2019) 381-86.Doi:10.4324/9781315782379-102.
  31. Mihalcea, Rada, Tarau and Paul TextRank:Bringing Order into Text, Proceedings of the Conference on Empirical Methods in Natural Language Processing. (2004) 404–11.
Index Terms

Computer Science
Information Sciences

Keywords

Digitalization Topic modeling Latent Dirichlet Allocation (LDA) Text summarization Extraction-based Summary Evaluation