CFP last date
20 May 2025
Reseach Article

Hybrid Deep Learning Models Based on Transformers for Fake News Detection in Albanian and English News

by Elton Tata, Jaumin Ajdari, Xhemal Zenuni, Mentor Hamiti
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 2
Year of Publication: 2025
Authors: Elton Tata, Jaumin Ajdari, Xhemal Zenuni, Mentor Hamiti
10.5120/ijca2025924805

Elton Tata, Jaumin Ajdari, Xhemal Zenuni, Mentor Hamiti . Hybrid Deep Learning Models Based on Transformers for Fake News Detection in Albanian and English News. International Journal of Computer Applications. 187, 2 ( May 2025), 62-71. DOI=10.5120/ijca2025924805

@article{ 10.5120/ijca2025924805,
author = { Elton Tata, Jaumin Ajdari, Xhemal Zenuni, Mentor Hamiti },
title = { Hybrid Deep Learning Models Based on Transformers for Fake News Detection in Albanian and English News },
journal = { International Journal of Computer Applications },
issue_date = { May 2025 },
volume = { 187 },
number = { 2 },
month = { May },
year = { 2025 },
issn = { 0975-8887 },
pages = { 62-71 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number2/hybrid-deep-learning-models-based-on-transformers-for-fake-news-detection-in-albanian-and-english-news/ },
doi = { 10.5120/ijca2025924805 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-05-17T02:45:32.687373+05:30
%A Elton Tata
%A Jaumin Ajdari
%A Xhemal Zenuni
%A Mentor Hamiti
%T Hybrid Deep Learning Models Based on Transformers for Fake News Detection in Albanian and English News
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 2
%P 62-71
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the era of social media, news propagation has shifted to digital platforms enabling faster and more extensive information distribution. Fake News Detection (FND) has gained considerable attention, with various studies, but still, it remains a complex task. This study providesan approach that combines several deep learning architectures. First, the Albanian and IFND datasets are collected and loaded. Subsequently, the CoreNLP toolbox is utilized for data pre-processing and feature extraction, followed by the application of the RMS-BERT-CapsNet (Root Mean Square - Bidirectional Encoder Representations from Transformers - Capsule Network) framework. A Deep-Shallow multimodal fusion approach based on Variational Autoencoder (VAE) used to fit and encode the textual and visual data. Performance metrics such as accuracy, loss, F1 score, training loss, and validation loss are used to evaluate the efficiency of the proposed methodology.

References
  1. Chauhan, T., & Palivela, H. (2021). Optimization and improvement of fake news detection using deep learning approaches for societal benefit. International Journal of Information Management Data Insights, 1(2), 100051.
  2. Kaliyar, R. K., Goswami, A., & Narang, P. (2021). FakeBERT: Fake news detection in social media with a BERT-based deep learning approach. Multimedia tools and applications, 80(8), 11765-11788.
  3. Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G. S., & On, B. W. (2020). Fake news stance detection using deep learning architecture (CNN-LSTM). IEEE Access, 8, 156695-156706.
  4. Jain, V., Kaliyar, R. K., Goswami, A., Narang, P., & Sharma, Y. (2022). AENeT: an attention-enabled neural architecture for fake news detection using contextual features. Neural Computing and Applications, 34(1), 771-782.
  5. Albahar, M. (2021). A hybrid model for fake news detection: Leveraging news content and user comments in fake news. IET Information Security, 15(2), 169-177.
  6. Okunoye, O. B., & Ibor, A. E. (2022). Hybrid fake news detection technique with genetic search and deep learning. Computers and Electrical Engineering, 103, 108344.
  7. Hanshal, O. A., Ucan, O. N., & Sanjalawe, Y. K. (2023). RETRACTED ARTICLE: Hybrid deep learning model for automatic fake news detection. Applied Nanoscience, 13(4), 2957-2967.
  8. Mehta, D., Dwivedi, A., Patra, A., & Anand Kumar, M. (2021). A transformer-based architecture for fake news classification. Social network analysis and mining, 11, 1-12.
  9. Kaliyar, R. K., Goswami, A., Narang, P., & Sinha, S. (2020). FNDNet–a deep convolutional neural network for fake news detection. Cognitive Systems Research, 61, 32-44.
  10. Mallik, A., & Kumar, S. (2024). Word2Vec and LSTM-based deep learning technique for context-free fake news detection. Multimedia Tools and Applications, 83(1), 919-940.
  11. E. Tata, J. Ajdari and N. Besimi, "Fake News Detection: A Comprehensive Survey," 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 2023, pp. 309-314, doi: 10.23919/MIPRO57284.2023.10159859.
  12. Aslam, N., Ullah Khan, I., Alotaibi, F. S., Aldaej, L. A., & Aldubaikil, A. K. (2021). Fake detect: A deep learning ensemble model for fake news detection. complexity, 2021(1), 5557784.
  13. Ali, A. M., Ghaleb, F. A., Mohammed, M. S., Alsolami, F. J., & Khan, A. I. (2023). Web-informed-augmented fake news detection model using stacked layers of convolutional neural network and deep autoencoder. Mathematics, 11(9), 1992.
  14. Luvembe, A. M., Li, W., Li, S., Liu, F., & Wu, X. (2024). CAF-ODNN: Complementary attention fusion with optimized deep neural network for multimodal fake news detection. Information Processing & Management, 61(3), 103653.
  15. Palani, B., Elango, S., & Viswanathan K, V. (2022). CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT. Multimedia Tools and Applications, 81(4), 5587-5620.
  16. Mishra, S., Shukla, P., & Agarwal, R. (2022). Analyzing machine learning enabled fake news detection techniques for diversified datasets. Wireless Communications and Mobile Computing, 2022(1), 1575365.
  17. Hua, J., Cui, X., Li, X., Tang, K., & Zhu, P. (2023). Multimodal fake news detection through data augmentation-based contrastive learning. Applied Soft Computing, 136, 110125.
  18. Choudhry, A., Khatri, I., Jain, M., & Vishwakarma, D. K. (2022). An emotion-aware multitask approach to fake news and rumor detection using transfer learning. IEEE Transactions on Computational Social Systems, 11(1), 588-599.
  19. Nadeem, M. I., Ahmed, K., Li, D., Zheng, Z., Alkahtani, H. K., Mostafa, S. M., ... & Abdel Hameed, H. (2022). EFND: A semantic, visual, and socially augmented deep framework for extreme fake news detection. Sustainability, 15(1), 133.
  20. Kumari, R., & Ekbal, A. (2021). Amfb: Attention-based multimodal factorized bilinear pooling for multimodal fake news detection. Expert Systems with Applications, 184, 115412.
  21. Zamil, Y. K., & Charkari, N. M. (2023). Combating Fake News on Social Media: A Fusion Approach for Improved Detection and Interpretability. IEEE Access.
  22. Amer, E., Kwak, K. S., & El-Sappagh, S. (2022). Context-based fake news detection model relying on deep learning models. Electronics, 11(8), 1255.
  23. Syed, L., Alsaeedi, A., Alhuri, L. A., & Aljohani, H. R. (2023). Hybrid weakly supervised learning with deep learning technique for detection of fake news from cyber propaganda. Array, 19, 100309.
Index Terms

Computer Science
Information Sciences
Fake News Identification

Keywords

Fake News IFND BERT BiLSTM