CFP last date
20 August 2025
Call for Paper
September Edition
IJCA solicits high quality original research papers for the upcoming September edition of the journal. The last date of research paper submission is 20 August 2025

Submit your paper
Know more
Random Articles
Reseach Article

Breaking the Black Box: Securing and Auditing Edge-Deployed LLMs via Shard Traceability

by Gururaj Shinde, Ritu Kuklani, Varad Vishwarupe
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 27
Year of Publication: 2025
Authors: Gururaj Shinde, Ritu Kuklani, Varad Vishwarupe
10.5120/ijca2025925483

Gururaj Shinde, Ritu Kuklani, Varad Vishwarupe . Breaking the Black Box: Securing and Auditing Edge-Deployed LLMs via Shard Traceability. International Journal of Computer Applications. 187, 27 ( Aug 2025), 44-49. DOI=10.5120/ijca2025925483

@article{ 10.5120/ijca2025925483,
author = { Gururaj Shinde, Ritu Kuklani, Varad Vishwarupe },
title = { Breaking the Black Box: Securing and Auditing Edge-Deployed LLMs via Shard Traceability },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2025 },
volume = { 187 },
number = { 27 },
month = { Aug },
year = { 2025 },
issn = { 0975-8887 },
pages = { 44-49 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number27/breaking-the-black-box-securing-and-auditing-edge-deployed-llms-via-shard-traceability/ },
doi = { 10.5120/ijca2025925483 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-02T01:56:29.635261+05:30
%A Gururaj Shinde
%A Ritu Kuklani
%A Varad Vishwarupe
%T Breaking the Black Box: Securing and Auditing Edge-Deployed LLMs via Shard Traceability
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 27
%P 44-49
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

EdgeShard represents a significant advancement in edge-based large language model (LLM) inference, enabling efficient, accurate, and privacy-preserving deployment by intelligently partitioning and scheduling computation across multiple edge devices. This collaborative approach outperforms traditional quantization and unstable cloud-edge methods. However, distributing inference across heterogeneous and potentially unreliable devices introduces new risks for robustness - such as increased vulnerability to device failures and attacks, and challenges for auditability, including fragmented execution logs and difficulties in tracing and verifying the end-to-end inference process.

References
  1. Ouyang, L., Wu, J., Jiang, X., et al. (2022). Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.
  2. Vishwarupe, V., Zahoor, S., Akhter, R., Bhatkar, V. P., Bedekar, M., Pande, M., Joshi, P. M., Patil, A., & Pawar, V. (2023). Designing a human-centered AI-based cognitive learning model for Industry 4.0 applications. In Industry 4.0 Convergence with AI, IoT, Big Data and Cloud Computing: Fundamentals, Challenges and Applications (pp. 84–95). Bentham Science Publishers.
  3. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–407.
  4. Sayyed, H., Alwazae, M., & Vishwarupe, V. (2025). BlockSafe: Universal blockchain-based identity management. In B. Alareeni (Ed.), Big Data in Finance: Transforming the Financial Landscape (Vol. 169, pp. 101–118). Springer. https://doi.org/10.1007/978-3-031-80656-8_6
  5. Vishwarupe, V., Maheshwari, S., Deshmukh, A., Mhaisalkar, S., Joshi, P. M., & Mathias, N. (2022). Bringing humans at the epicentre of artificial intelligence: A confluence of AI, HCI, and human-centered computing. Procedia Computer Science, 204, 914–921. https://doi.org/10.1016/j.procs.2022.08.111
  6. Rayson Laroca, R., Severo, E., Zanlorensi, L., Oliveira, L., Gonçalves, G., Schwartz, W., & Menotti, D. (2018). A robust real-time automatic license plate recognition based on the YOLO detector. arXiv preprint arXiv:1802.09567.
  7. Vishwarupe, V., Bedekar, M., Pande, M., & Hiwale, A. (2018). Intelligent Twitter spam detection: A hybrid approach. In X. S. Yang, A. Nagar, & A. Joshi (Eds.), Smart trends in systems, security and sustainability (Vol. 18, pp. 157–167). Springer. https://doi.org/10.1007/978-981-10-6916-1_17
  8. T. Li, Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.
  9. Vishwarupe, V., Joshi, P. M., Mathias, N., Maheshwari, S., Mhaisalkar, S., & Pawar, V. (2022). Explainable AI and interpretable machine learning: A case study in perspective. Procedia Computer Science, 204, 869–876. https://doi.org/10.1016/j.procs.2022.08.105
  10. The Syslog Protocol. (2001/2009). RFC 3164/5424, Internet Engineering Task Force (IETF).
  11. Wani, K., Khedekar, N., Vishwarupe, V., & Pushyanth, N. (2023). Digital twin and its applications. In Research Trends in Artificial Intelligence: Internet of Things (pp. 120–134). Bentham Science Publishers.
  12. Xie, C., Koyejo, O., & Gupta, I. (2020). Fall of empires: Breaking Byzantine-tolerant SGD by inner product manipulation. In Proceedings of the International Conference on Machine Learning (ICML).
  13. Vidgen, B., Harris, A., & Emmery, C. (2021). Challenges and frontiers in abusive content detection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
  14. Vishwarupe, V., Bedekar, M., Pande, M., Bhatkar, V. P., Joshi, P., Zahoor, S., & Kuklani, P. (2022). Comparative analysis of machine learning algorithms for analyzing NASA Kepler mission data. Procedia Computer Science, 204, 945–951. https://doi.org/10.1016/j.procs.2022.08.115
  15. Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017). Machine learning with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing Systems (NeurIPS).
  16. Vishwarupe, V. (2022, February 10). Synthetic content generation using artificial intelligence. All Things Policy. IVM Podcasts. https://shows.ivmpodcasts.com/show/all-things-policy-Rx64RVpQImivrNQ8/episode/synthetic-content-generation-and-chinas-worries-ja9s-I7rfgZE3IhXRg2Fk
  17. Kairouz, P., McMahan, H. B., et al. (2021). Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1–2), 1–210.
  18. Sable, N. P., Rathod, V. U., Mahalle, P. N., & Birari, D. R. (2022, March). A multiple stage deep learning model for NID in MANETs. In 2022 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 1–6). IEEE.
  19. Common Event Format (CEF); JSON Logging Standards. ArcSight.
  20. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.
  21. Zahoor, S., Bedekar, M., Mane, V., & Vishwarupe, V. (2016). Uniqueness in user behavior while using the web. In S. Satapathy, Y. Bhatt, A. Joshi, & D. Mishra (Eds.), Proceedings of the International Congress on Information and Communication Technology (Vol. 438, pp. 229–236). Springer. https://doi.org/10.1007/978-981-10-0767-5_24
  22. Vishwarupe, V., Bedekar, M., & Zahoor, S. (2015). Zone-specific weather monitoring system using crowdsourcing and telecom infrastructure. In 2015 International Conference on Information Processing (ICIP) (pp. 823–827). IEEE. https://doi.org/10.1109/INFOP.2015.7489495
  23. Zahoor, S., Bedekar, M., & Vishwarupe, V. (2016). A framework to infer webpage relevancy for a user. In S. Satapathy & S. Das (Eds.), Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1 (Vol. 50, pp. 173–181). Springer. https://doi.org/10.1007/978-3-319-30933-0_16
  24. Gehman, S., Gururangan, S., Sap, M., et al. (2020). RealToxicityPrompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462.
  25. Zhang, M., Cao, J., Shen, X., & Cui, Z. (2024). EdgeShard: Efficient LLM inference via collaborative edge computing. arXiv preprint arXiv:2405.14371.
  26. Deoskar, V., Pande, M., & Vishwarupe, V. (2024). An analytical study for implementing 360-degree M-HRM practices using AI. In Intelligent Systems for Smart Cities: Select Proceedings of the 2nd International Conference, ICISA 2023 (pp. 429–442). Springer Nature.
  27. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., & Ferrari, V. (2020). The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982.
  28. Vishwarupe, V., et al. (2021). A zone-specific weather monitoring system. Australian Patent No. AU2021106275. Australian Government, IP Australia. https://patents.google.com/?inventor=Varad+Vishwarupe
  29. Vishwarupe, V., Bedekar, M., Joshi, P. M., Pande, M., Pawar, V., & Shingote, P. (2022). Data analytics in the game of cricket: A novel paradigm. Procedia Computer Science, 204, 937–944. https://doi.org/10.1016/j.procs.2022.08.114
  30. Vishwarupe, V. V., & Joshi, P. M. (2016). Intellert: A novel approach for content-priority based message filtering. In 2016 IEEE Bombay Section Symposium (IBSS) (pp. 1–6). IEEE. https://doi.org/10.1109/IBSS.2016.7940206
  31. Vishwarupe, V., et al. (2025). Predicting mental health ailments using social media activities and keystroke dynamics with machine learning. In B. Alareeni (Ed.), Big Data in Finance: Transforming the Financial Landscape (Vol. 169, pp. 63–80). Springer. https://doi.org/10.1007/978-3-031-80656-8_4
  32. Zahoor, S., Akhter, R., Vishwarupe, V., Bedekar, M., Pande, M., Bhatkar, V. P., Joshi, P. M., Pawar, V., Mandora, N., & Kuklani, P. (2023). A comprehensive study of state-of-the-art applications and challenges in IoT and blockchain technologies for Industry 4.0. In Industry 4.0 Convergence with AI, IoT, Big Data and Cloud Computing: Fundamentals, Challenges and Applications (pp. 1–16). Bentham Science Publishers.
Index Terms

Computer Science
Information Sciences

Keywords

Large Language Models Edge AI RLHF LLMs Distributed AI Black Box Models Shard AI ML Human-Centered AI