CFP last date
20 May 2025
Reseach Article

Enhanced Hybrid Energy Harvesting Strategies for Sustainable Wireless Sensor Network Performance

by Neha Gupta, Anuj Kumar Dwivedi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 3
Year of Publication: 2025
Authors: Neha Gupta, Anuj Kumar Dwivedi
10.5120/ijca2025924826

Neha Gupta, Anuj Kumar Dwivedi . Enhanced Hybrid Energy Harvesting Strategies for Sustainable Wireless Sensor Network Performance. International Journal of Computer Applications. 187, 3 ( May 2025), 30-34. DOI=10.5120/ijca2025924826

@article{ 10.5120/ijca2025924826,
author = { Neha Gupta, Anuj Kumar Dwivedi },
title = { Enhanced Hybrid Energy Harvesting Strategies for Sustainable Wireless Sensor Network Performance },
journal = { International Journal of Computer Applications },
issue_date = { May 2025 },
volume = { 187 },
number = { 3 },
month = { May },
year = { 2025 },
issn = { 0975-8887 },
pages = { 30-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number3/enhanced-hybrid-energy-harvesting-strategies-for-sustainable-wireless-sensor-network-performance/ },
doi = { 10.5120/ijca2025924826 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-05-17T02:45:46.470413+05:30
%A Neha Gupta
%A Anuj Kumar Dwivedi
%T Enhanced Hybrid Energy Harvesting Strategies for Sustainable Wireless Sensor Network Performance
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 3
%P 30-34
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Wireless Sensor Networks (WSNs) are widely used in a wide range of applications such as environment monitoring, healthcare, etc., and are considered as an integral component of modern system. But the energy restriction of wireless sensor nodes on battery dependence, and defines how it impacts its large use. In this paper, enhanced hybrid energy harvesting techniques for sustainable operation of WSNs are studied. The enhanced hybrid energy harvesting approaches together use various forms of energy sources, for example, solar-wind or solar-thermal or various other combinations to ensure the continuous and stable energy service for the wireless sensor nodes. This research paper investigates the integration of such energy sources, the use of energy management systems, advanced power optimization techniques that can be used to exploit such sources, and their effect on network life and performance.

References
  1. Shaikh, F. K., &Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041-1054.
  2. Ryu, H., Yoon, H. J., & Kim, S. W. (2019). Hybrid energy harvesters: toward sustainable energy harvesting. Advanced Materials, 31(34), 1802898.
  3. Voigt, T., Ritter, H., & Schiller, J. (2003, October). Utilizing solar power in wireless sensor networks. In 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN'03. Proceedings. (pp. 416-422). IEEE.
  4. Diallo, O., Rodrigues, J. J., &Sene, M. (2012). Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1013-1021.
  5. Al-Turjman, F. M., Hassanein, H. S., &Ibnkahla, M. (2015). Towards prolonged lifetime for deployed WSNs in outdoor environment monitoring. Ad Hoc Networks, 24, 172-185.
  6. Weddell, A. S., Magno, M., Merrett, G. V., Brunelli, D., Al-Hashimi, B. M., &Benini, L. (2013, March). A survey of multi-source energy harvesting systems. In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 905-908). IEEE.
  7. Ehlali, S., &Sayah, A. (2022). Towards improved lifespan for wireless sensor networks: A review of energy harvesting technologies and strategies. European Journal of Electrical Engineering and Computer Science, 6(1), 32-38.
  8. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., &Rosendahl, L. (2020). Hybrid energy harvesting system to maximize power generation from solar energy. Energy conversion and management, 205, 112352.
  9. Bathre, M., & Das, P. K. (2020, July). Hybrid energy harvesting for maximizing lifespan and sustainability of wireless sensor networks: A comprehensive review & proposed systems. In 2020 international conference on computational intelligence for smart power system and sustainable energy (CISPSSE) (pp. 1-6). IEEE.
  10. Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., &Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs) A review. ACM Transactions on Sensor Networks (TOSN), 14(2), 1-50.
  11. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., &Rosendahl, L. (2020). Hybrid energy harvesting system to maximize power generation from solar energy. Energy conversion and management, 205, 112352.
  12. Champier, D. (2017). Thermoelectric generators: A review of applications. Energy conversion and management, 140, 167-181.
  13. He, J., Li, K., Jia, L., Zhu, Y., Zhang, H., &Linghu, J. (2024). Advances in the applications of thermoelectric generators. Applied Thermal Engineering, 236, 121813.
  14. Shaukat, H., Ali, A., Ali, S., Altabey, W. A., Noori, M., &Kouritem, S. A. (2023). Applications of sustainable hybrid energy harvesting: A review. Journal of Low Power Electronics and Applications, 13(4), 62.
  15. Matiko, J. W., Grabham, N. J., Beeby, S. P., & Tudor, M. J. (2013). Review of the application of energy harvesting in buildings. Measurement Science and Technology, 25(1), 012002.
  16. Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32-es.
  17. Kim, T., Vecchietti, L. F., Choi, K., Lee, S., &Har, D. (2020). Machine learning for advanced wireless sensor networks: A review. IEEE Sensors Journal, 21(11), 12379-12397.
  18. Hudhajanto, R. P., Fahmi, N., &Prayitno, E. (2018, October). Real-time monitoring for environmental through wireless sensor network technology. In 2018 International Conference on Applied Engineering (ICAE) (pp. 1-5). IEEE.
  19. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996-2018.
  20. Boudhir, A., Bouhorma, M., &Benahmed, M. (2012). Energy optimization approaches in wireless sensor networks: A survey. International Journal of networks and systems, 1(1).
  21. Ali, A., Ming, Y., Chakraborty, S., &Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future internet, 9(4), 77.
  22. Sharma, S., Wazid, M., Gupta, N., Singh, D. P., &Goudar, R. H. (2013, March). Data recovery with energy efficient task allocation in Wireless Sensor Networks. In 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN) (pp. 298-303). IEEE.
  23. Jackulin, T., Ramya, M., &Subashini, C. (2012, December). Energy optimization for WSN architecture and self test Embedded processor. In 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM) (pp. 253-256). IEEE.
  24. Isyaku, B., bin Abu Bakar, K., Yusuf, N. M., Abaker, M., Abdelmaboud, A., &Nagmeldin, W. (2024). Software defined wireless sensor load balancing routing for internet of things applications: Review of approaches. Heliyon.
  25. Yogaraja, G. S. R., Thippeswamy, M. N., &Venkatesh, K. (2024). Optimal load balancing strategy-based centralised sensor for a WSN-based cloud-IoT framework using a hybrid meta-heuristic strategy. International Journal of Autonomous and Adaptive Communications Systems, 17(3), 247-271.
  26. Gurewitz, O., Shifrin, M., &Dvir, E. (2022). Data gathering techniques in wsn: a cross-layer view. Sensors, 22(7), 2650.
  27. SendraCompte, S., Lloret, J., García Pineda, M., & Toledo Alarcón, J. F. (2011). Power saving and energy optimization techniques for wireless sensor networks. Journal of communications, 6(6), 439-459.
  28. Carvalho, D. F., Ferrari, P., Sisinni, E., Depari, A., Rinaldi, S., Pasetti, M., & Silva, D. (2019). A test methodology for evaluating architectural delays of LoRaWAN implementations. Pervasive and Mobile Computing, 56, 1-17.
Index Terms

Computer Science
Information Sciences

Keywords

Wireless Sensor Networks (WSNs)  Hybrid Energy Harvesting Energy Management Sustainable Networks Power Optimization