CFP last date
22 September 2025
Call for Paper
October Edition
IJCA solicits high quality original research papers for the upcoming October edition of the journal. The last date of research paper submission is 22 September 2025

Submit your paper
Know more
Random Articles
Reseach Article

Implementation of Exploratory Data Analysis (EDA) in Python

by Ahmad Farhan AlShammari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 32
Year of Publication: 2025
Authors: Ahmad Farhan AlShammari
10.5120/ijca2025925577

Ahmad Farhan AlShammari . Implementation of Exploratory Data Analysis (EDA) in Python. International Journal of Computer Applications. 187, 32 ( Aug 2025), 34-42. DOI=10.5120/ijca2025925577

@article{ 10.5120/ijca2025925577,
author = { Ahmad Farhan AlShammari },
title = { Implementation of Exploratory Data Analysis (EDA) in Python },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2025 },
volume = { 187 },
number = { 32 },
month = { Aug },
year = { 2025 },
issn = { 0975-8887 },
pages = { 34-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number32/implementation-of-exploratory-data-analysis-eda-in-python/ },
doi = { 10.5120/ijca2025925577 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-20T21:35:27+05:30
%A Ahmad Farhan AlShammari
%T Implementation of Exploratory Data Analysis (EDA) in Python
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 32
%P 34-42
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The goal of this research is to develop an exploratory data analysis model in Python. Exploratory Data Analysis (EDA) is used to understand the nature of data. It helps to identify the main characteristics of data (patterns, trends, and relationships). The application of exploratory data analysis helps to build a solid foundation for more advanced analysis. The basic steps of exploratory data analysis are explained: importing libraries, reading data, displaying data, displaying general information, computing descriptive statistics, cleaning data (duplicates, missing values, and outliers), and analyzing data (univariate, bivariate, and multivariate). The developed model was tested on an experimental dataset. The model successfully performed the basic steps of exploratory data analysis and provided the required results.

References
  1. Sammut, C., & Webb, G. I. (2011). "Encyclopedia of Machine Learning". Springer.
  2. Jung, A. (2022). "Machine Learning: The Basics". Springer.
  3. Kubat, M. (2021). "An Introduction to Machine Learning". Springer.
  4. Li, H. (2023). "Machine Learning Methods". Springer.
  5. Dey, A. (2016). "Machine Learning Algorithms: A Review". International Journal of Computer Science and Information Technologies, 7 (3), 1174-1179.
  6. Bonaccorso, G. (2018). "Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning". Packt Publishing.
  7. Jo, T. (2021). "Machine Learning Foundations: Supervised, Unsupervised, and Advanced Learning". Springer.
  8. Jordan, M. I., & Mitchell, T. M. (2015). "Machine Learning: Trends, Perspectives, and Prospects". Science, 349 (6245), 255-260.
  9. Forsyth, D. (2019). "Applied Machine Learning". Springer.
  10. Chopra, D., & Khurana, R. (2023). "Introduction to Machine Learning with Python". Bentham Science Publishers.
  11. Müller, A. C., & Guido, S. (2016). "Introduction to Machine Learning with Python: A Guide for Data Scientists". O'Reilly Media.
  12. Zollanvari, A. (2023). "Machine Learning with Python: Theory and Implementation". Springer.
  13. Raschka, S. (2015). "Python Machine Learning". Packt Publishing.
  14. Sarkar, D., Bali, R., & Sharma, T. (2018). "Practical Machine Learning with Python". Apress.
  15. Igual, L., & Seguí, S. (2017). "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications". Springer.
  16. VanderPlas, J. (2017). "Python Data Science Handbook: Essential Tools for Working with Data". O'Reilly Media.
  17. Yale, K., Nisbet, R., & Miner, G. D. (2018). "Handbook of Statistical Analysis and Data Mining Applications". Academic Press.
  18. Unpingco, J. (2022). "Python for Probability, Statistics, and Machine Learning". Springer.
  19. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). "An Introduction to Statistical Learning: With Applications in Python". Springer.
  20. Navlani, A., Fandango, A., & Idris, I. (2021). "Python Data Analysis". Packt Publishing.
  21. Unpingco, J. (2021). "Python Programming for Data Analysis". Springer.
  22. McKinney, W. (20128). "Python for Data Analysis". O'Reilly Media.
  23. Embarak, O. (2018). "Data Analysis and Visualization using Python ". Apress.
  24. Denis, D. J. (2021). "Applied Univariate, Bivariate, and Multivariate Statistics Using Python: A Beginner's Guide to Advanced Data Analysis". John Wiley & Sons.
  25. Mukhiya, S. K., & Ahmed, U. (2020). "Hands-On Exploratory Data Analysis with Python". Packt Publishing.
  26. Chen, D. (2018). "Pandas for Everyone: Python Data Analysis". Addison-Wesley.
  27. Molin, S. (2019). "Hands-On Data Analysis with Pandas". Packt Publishing.
  28. Myatt, G. J. (2014). "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining". John Wiley & Sons.
  29. Vigni, M. L., Durante, C., & Cocchi, M. (2013). "Exploratory Data Analysis". In Data Handling in Science and Technology. 28, 55-126. Elsevier.
  30. Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (2016). "Exploratory Data Analysis". In Secondary Analysis of Electronic Health Records, pp. 185-203, Springer.
  31. Sahoo, K., Samal, A. K., Pramanik, J., & Pani, S. K. (2019). "Exploratory Data Analysis using Python". International Journal of Innovative Technology and Exploring Engineering, 8 (12), 4727-4735.
  32. Heydt, M. (2017). "Learning Pandas: High-Performance Data Manipulation and Analysis in Python". Packt Publishing.
  33. Miller, C. (2018). "Hands-On Data Analysis with Numpy and Pandas". Packt Publishing.
  34. Tukey, J. W. (1977). "Exploratory Data Analysis". Addison-Wesley.
  35. Python: http://www.python.org
  36. Numpy: http://www.numpy.org
  37. Pandas: http://pandas.pydata.org
  38. Matplotlib: http://www. matplotlib.org
  39. Seaborn: http://seaborn.pydata.org
  40. NLTK: http://www.nltk.org
  41. SciPy: http://scipy.org
  42. SK Learn: http://scikit-learn.org
  43. Kaggle: http://www.kaggle.com
  44. Jupyter: http://www.jupyter.org
Index Terms

Computer Science
Information Sciences

Keywords

Artificial Intelligence Machine Learning Data Science Data Analysis Exploratory Data Analysis EDA Univariate Bivariate Multivariate Python Programming.