CFP last date
22 September 2025
Call for Paper
October Edition
IJCA solicits high quality original research papers for the upcoming October edition of the journal. The last date of research paper submission is 22 September 2025

Submit your paper
Know more
Random Articles
Reseach Article

Blending Econometric and Deep Learning Approaches for Enhanced Volatility Forecasting of the KSE-100 Index

by Ubaida Fatima, Rimsha Zafar, Syeda Arsala Shah, Abdus Samad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 35
Year of Publication: 2025
Authors: Ubaida Fatima, Rimsha Zafar, Syeda Arsala Shah, Abdus Samad
10.5120/ijca2025925503

Ubaida Fatima, Rimsha Zafar, Syeda Arsala Shah, Abdus Samad . Blending Econometric and Deep Learning Approaches for Enhanced Volatility Forecasting of the KSE-100 Index. International Journal of Computer Applications. 187, 35 ( Aug 2025), 36-44. DOI=10.5120/ijca2025925503

@article{ 10.5120/ijca2025925503,
author = { Ubaida Fatima, Rimsha Zafar, Syeda Arsala Shah, Abdus Samad },
title = { Blending Econometric and Deep Learning Approaches for Enhanced Volatility Forecasting of the KSE-100 Index },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2025 },
volume = { 187 },
number = { 35 },
month = { Aug },
year = { 2025 },
issn = { 0975-8887 },
pages = { 36-44 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number35/blending-econometric-and-deep-learning-approaches-for-enhanced-volatility-forecasting-of-the-kse-100-index/ },
doi = { 10.5120/ijca2025925503 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-31T01:36:52.334035+05:30
%A Ubaida Fatima
%A Rimsha Zafar
%A Syeda Arsala Shah
%A Abdus Samad
%T Blending Econometric and Deep Learning Approaches for Enhanced Volatility Forecasting of the KSE-100 Index
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 35
%P 36-44
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The objective of this study is to develop a hybrid forecasting model that combines statistical and machine learning techniques to predict stock market volatility in Pakistan. The dataset used spans from January 2019 to December 2023, and the model's accuracy is evaluated using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Traditional forecasting models often struggle to account for market uncertainty due to external economic factors, such as IMF policies and currency fluctuations. By utilising non-linear techniques, including Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Linear Regression, and Generalised Autoregressive Conditional Heteroscedasticity (GARCH), this study aims to enhance volatility predictions, thereby enabling quicker and more informed investment decisions.

References
  1. Santosh Kumar, Surya Kant Pal, Ashok Kumar Pal, Khursheed Alam; Prediction of stock market using machine learning algorithms. AIP Conf. Proc. 30 January 2025; 3191 (1): 040009. https://doi.org/10.1063/5.0247388
  2. Gunaryati, A., Mutiara, A., & Puspitodjati, S. (2025). Enhancing Sharia Stock Price Forecasting using a Hybrid ARIMA-LSTM with Locally Weighted Scatterplot Smoothing Regression Approach. Journal of Applied Data Sciences, 6(1), 683-694. DOI: https://doi.org/10.47738/jads.v6i1.514
  3. Eka, A. P. B., Bakri, A. A., & Yuliyani, L. (2024). Utilizing linear regression to forecast the stock price fluctuations of top-rated companies. Jurnal Info Sains : Informatika Dan Sains, 14(01), 551–559.
  4. Sangeetha, J. M., & Alfia, K. J. (2024). Financial stock market forecast using evaluated linear regression-based machine learning technique. Measurement: Sensors, 31, 100950. https://doi.org/10.1016/j.measen.2023.100950
  5. Zeda Xu, John Liechty, Sebastian Benthall, Nicholas Skar-Gislinge, and Christopher McComb. 2024. GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets. In Proceedings of the 5th ACM International Conference on AI in Finance (ICAIF '24). Association for Computing Machinery, New York, NY, USA, 600– 607. https://doi.org/10.1145/3677052.3698600
  6. Wu, X., Zhao, A., Wang, Y., & Han, Y. (2024). Forecasting Chinese stock market volatility with high-frequency intraday and current return information. Pacific-Basin Finance Journal, 86, 102458. https://doi.org/10.1016/j.pacfin.2024.102458
  7. García-Medina, A., Aguayo-Moreno, E. LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. Comput Econ 63, 1511–1542 (2024). https://doi.org/10.1007/s10614-023-10373-8.
  8. Campisi, G., Muzzioli, S., & De Baets, B. (2024). A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices. International Journal of Forecasting, 40(3), 869-880. https://doi.org/10.1016/j.ijforecast.2023.07.002.
  9. Xu, K., Wu, Y., Jiang, M., Sun, W., & Yang, Z. (2024). Hybrid LSTM-GARCH Framework for Financial Market Volatility Risk Prediction. https://doi.org/10.5281/zenodo.13643010.
  10. García Medina, Andrés & Moreno, Ester. (2023). LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. Computational Economics. 53 63. 10.1007/s10614-023-10373-8. DOI: 10.1007/s10614-023-10373-8.
  11. Eliasson, E. (2023). Long Horizon Volatility Forecasting Using GARCH-LSTM Hybrid Models: A Comparison Between Volatility Forecasting Methods on the Swedish Stock Market. https://kth.divaportal.org/smash/get/diva2:1849031/FULLTEXT01.pdf
  12. Ghani, U., Zhu, B., Qin, Q., & Ghani, M. (2023). Forecasting US Stock Market Volatility: Evidence from ESG and CPU indices. Finance Research Letters, 59, 104811. https://doi.org/10.1016/j.frl.2023.104811
  13. Xie, Wangsong, Nonlinear Volatility Risk Prediction Algorithm of Financial Data Based on Improved Deep Learning, Discrete Dynamics in Nature and Society, 2022, 3037040, 8 pages, 2022. https://doi.org/10.1155/2022/3037040
  14. Rubio, L., Palacio Pinedo, A., Mejía Castaño, A. et al. Forecasting volatility by using wavelet transform, ARIMA, and GARCH models. Eurasian Econ Rev 13, 803–830 (2023). https://doi.org/10.1007/s40822-023-00243-x
  15. Azhar, H. (2022). Returns Forecasting in Pakistan: A Study by Using ARIMA Modelling (Doctoral dissertation, CAPITAL UNIVERSITY).Kakade, K., Jain, I., & Mishra, A. K. (2022). Value-at-Risk forecasting: A hybrid ensemble learning GARCHLSTM based approach. Resources Policy, 78, 102903. https://doi.org/10.1016/j.resourpol.2022.102903
  16. Jiao, X., Song, Y., Kong, Y., & Tang, X. (2022). Volatility forecasting for crude oil based on text information and a deep learning PSO-LSTM model. Journal of Forecasting, 41(5), 933-944. https://doi.org/10.1002/for.2839
  17. Liu, R., Jiang, Y., & Lin, J. (2021). Forecasting the Volatility of Specific Risk for Stocks with LSTM. Procedia Computer Science, 202, 111-114. https://doi.org/10.1016/j.procs.2022.04.015
  18. Zhang, W., Gong, X., Wang, C., & Ye, X. (2021). Predicting stock market volatility based on textual sentiment: A nonlinear analysis. Journal of Forecasting, 40(8), 14791500. https://doi.org/10.1002/for.2777
  19. Hameed, M. ., Iqbal, K. ., Ghazali, R. ., Jaskani, F. H. ., & Saman, Z. . (2021). Karachi Stock Exchange Price Prediction using Machine Learning Regression Techniques. EAI Endorsed Transactions on Creative Technologies, 8(28), e5. https://doi.org/10.4108/eai.24-8-2021.170753
  20. Muhammad Shahzeb Alia*, A. J. (24 September 2020.). Modelling and Forecasting Volatility in Pakistan Stock. International Journal of Sciences: Basic and Applied Research. 54
  21. Aamir, Muhammad & Ali, Hazrat & Khalil, U. & Bilal, Muhammad. (2020). Comparative Analysis Of Alternative Time Series Models In Forecasting Karachi Stock Exchange. 19. 7981-8002. 10.17051/ilkonline.2020.04.765193.
  22. Vidal, A., & Kristjanpoller, W. (2020). Gold volatility prediction using a CNNLSTM approach. Expert Systems With Applications, 157, 113481. https://doi.org/10.1016/j.eswa.2020.113481
  23. Hu, Y., Ni, J., & Wen, L. (2020). A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction. Physica A: Statistical Mechanics and its Applications, 557, 124907. https://doi.org/10.1016/j.physa.2020.124907
  24. (2019), C. e. (20 February 2019). The single-cell transcriptional landscape of mammalian organogenesis.
  25. Asghar, M.Z., Rahman, F., Kundi, F.M. et al. Development of a stock market trend prediction system using multiple regression. Comput Math Organ Theory 25, 271–301 (2019). https://doi.org/10.1007/s10588-019-09292-7
  26. Idrees, S. M., Alam, M. A., & Agarwal, P. (2019). A Prediction Approach for Stock Market Volatility Based on Time Series Data. IEEE Access, 7, 17287–17298. https://doi.org/10.1109/access.2019.2895252
  27. Kim, Ha & Won, Chang. (2018). Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models. Expert Systems with Applications. 103. 10.1016/j.eswa.2018.03.002. https://doi.org/10.1016/j.eswa.2018.03.002
  28. Timothy A. Smith, with Alex Caligiuri, J Rhet Montana, "Using a Multiple Linear Regression Model to Calculate Stock Market Volatility," International Journal of Mathematics Trends and Technology (IJMTT), vol. 57, no. 4, pp. 220-224, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V57P531
  29. Gharehchopogh, F. S., Bonab, T. H., & Khaze, S. R. (2013). A linear regression approach to prediction of stock market trading volume: a case study. International Journal of Managing Value and Supply Chains, 4(3), 25. chrome-
  30. Situm, Mario, Time Series Volatility Forecasting Using Linear Regression and GARCH (February 7, 2010). Available at SSRN: or http://dx.doi.org/10.2139/ssrn.1549385
  31. Angelidis, T., Benos, A., & Degiannakis, S. (2004). The use of GARCH models in VaR estimation. Statistical Methodology, 1(1-2), 105-128. https://doi.org/10.1016/j.stamet.2004.08.004 55
  32. Contreras, J. (3, AUGUST 2003). ARIMA Models to Predict Next-Day Electricity Prices. Retrieved from Contreras, J. (n.d.). Javier Contreras.
  33. R.L golden, c. (1994, december 1). Observations of cosmic-ray electrons and positrons using an imaging calorimeter.
Index Terms

Computer Science
Information Sciences

Keywords

Long Short-Term Memory (LSTM) Generalised Autoregressive Conditional Heteroscedasticity (GARCH) Autoregressive Integrated Moving Average (ARIMA) Mean Absolute Error (MAE) Root Mean Squared Error (RMSE).