CFP last date
20 October 2025
Call for Paper
November Edition
IJCA solicits high quality original research papers for the upcoming November edition of the journal. The last date of research paper submission is 20 October 2025

Submit your paper
Know more
Random Articles
Reseach Article

Ensemble Learning and Graph Neural Networks for High Throughput Screening of Non-Toxic, Thermally Stable Hybrid Perovskites for Solar Energy

by Maatank Parashar, Tejas Dhulipalla
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 187 - Number 40
Year of Publication: 2025
Authors: Maatank Parashar, Tejas Dhulipalla
10.5120/ijca2025925705

Maatank Parashar, Tejas Dhulipalla . Ensemble Learning and Graph Neural Networks for High Throughput Screening of Non-Toxic, Thermally Stable Hybrid Perovskites for Solar Energy. International Journal of Computer Applications. 187, 40 ( Sep 2025), 19-25. DOI=10.5120/ijca2025925705

@article{ 10.5120/ijca2025925705,
author = { Maatank Parashar, Tejas Dhulipalla },
title = { Ensemble Learning and Graph Neural Networks for High Throughput Screening of Non-Toxic, Thermally Stable Hybrid Perovskites for Solar Energy },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2025 },
volume = { 187 },
number = { 40 },
month = { Sep },
year = { 2025 },
issn = { 0975-8887 },
pages = { 19-25 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume187/number40/ensemble-learning-and-graph-neural-networks-for-high-throughput-screening-of-non-toxic-thermally-stable-hybrid-perovskites-for-solar-energy/ },
doi = { 10.5120/ijca2025925705 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-09-23T00:36:52.799757+05:30
%A Maatank Parashar
%A Tejas Dhulipalla
%T Ensemble Learning and Graph Neural Networks for High Throughput Screening of Non-Toxic, Thermally Stable Hybrid Perovskites for Solar Energy
%J International Journal of Computer Applications
%@ 0975-8887
%V 187
%N 40
%P 19-25
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This study introduces an artificial intelligence framework for accelerating the discovery of stable, lead-free hybrid organic–inorganic double perovskites for solar energy applications. We combined a pre-trained Atomistic Line Graph Neural Network (ALIGNN) with gradient boosting ensembles to predict three critical properties: formation energy, bandgap, and Debye temperature. The ALIGNN model was trained on 8,000 crystal structures and achieved mean absolute errors of 0.011 eV per atom for formation energy, 0.094 eV for bandgap, and 10.5 K for Debye temperature. The gradient boosting models provided complementary accuracy and interpretability, particularly for bandgap classification. Using this pipeline, we screened 8,412 candidate compounds and identified K₂AgBiBr₆ as a promising material with a bandgap of 1.34 eV, a Debye temperature of 402 K, and a formation energy of −2.31 eV per atom. These values suggest long-term thermal stability and high photovoltaic potential without toxic lead. Compared with density functional theory calculations, our approach reduces computational cost by more than 90 percent while maintaining predictive fidelity. The framework offers a scalable path toward rapid identification of practical solar absorber materials and could significantly shorten the timeline for developing safe and efficient perovskite photovoltaics.

References
  1. International Renewable Energy Agency. (2021). World Energy Transitions Outlook 2021: 1.5°C Pathway. IRENA. https://www.irena.org/publications
  2. Green, M. A. (2006). Silicon photovoltaic cells: Advances and future prospects. Solar Energy, 76(1-3), 3–8. https://doi.org/10.1016/j.solener.2003.09.015
  3. Babayigit, A., Ethirajan, A., Muller, M., & Conings, B. (2016). Toxicity of lead-free perovskite solar cells. Nature Materials, 15(3), 247–251. https://doi.org/10.1038/nmat4572
  4. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r
  5. Best Research-Cell Efficiency Chart. (2023). National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-efficiency.html
  6. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 13(4), 1764–1769. https://doi.org/10.1021/nl400349b
  7. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547–555. https://doi.org/10.1038/s41586-018-0337-2
  8. Xie, T., & Grossman, J. C. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120(14), 145301. https://doi.org/10.1103/PhysRevLett.120.145301
  9. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: Recent applications and prospects. npj Computational Materials, 3(1), 54. https://doi.org/10.1038/s41524-017-0056-5
  10. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., ... & Persson, K. A. (2013). The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. https://doi.org/10.1063/1.4812323
  11. Rupp, M. (2015). Machine learning for quantum mechanics in a nutshell. International Journal of Quantum Chemistry, 115(16), 1058–1073. https://doi.org/10.1002/qua.24954
  12. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169. https://doi.org/10.1103/PhysRevB.54.11169
  13. Shluger, A. L., & Stoneham, A. M. (1993). Small polarons in real crystals: Concepts and problems. Journal of Physics: Condensed Matter, 5(19), 3049. https://doi.org/10.1088/0953-8984/5/19/003
  14. Curtarolo, S., Hart, G. L. W., Nardelli, M. B., Mingo, N., Sanvito, S., & Levy, O. (2013). The high-throughput highway to computational materials design. Nature Materials, 12(3), 191–201. https://doi.org/10.1038/nmat3568
  15. Chen, C., Zuo, Y., Ye, W., Li, X., Deng, Z., Ong, S. P., & Lu, W. (2020). Graph neural networks for scalable, accurate, and interpretable materials property prediction. npj Computational Materials, 6(1), 81. https://doi.org/10.1038/s41524-020-00362-3
  16. Sun, Y., Peng, H., Wang, J., & Yang, W. (2019). Machine learning for perovskite materials design and discovery. Journal of Materials Chemistry A, 7(45), 25639–25657. https://doi.org/10.1039/C9TA09051H
  17. Zhu, H., Liu, Y., Xu, K., Zhao, H., & Yu, D. (2021). Deep learning for material informatics: Methods, applications, and challenges. Advanced Intelligent Systems, 3(2), 2000145. https://doi.org/10.1002/aisy.202000145
  18. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  19. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
  20. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30. https://arxiv.org/abs/1706.03762
  22. Zhu, Q., Zhang, L., Yang, W., & Wang, J. (2020). Application of convolutional neural networks in materials discovery and design. npj Computational Materials, 6(1), 85. https://doi.org/10.1038/s41524-020-00354-3
  23. Lee, J., Seko, A., Shitara, K., Nakayama, K., & Tanaka, I. (2016). Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Physical Review B, 93(11), 115104. https://doi.org/10.1103/PhysRevB.93.115104
  24. Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361(6400), 360–365. https://doi.org/10.1126/science.aat2663
  25. Choudhary, K., Garrity, K. F., Reid, A. C. E., DeCost, B. L., Biacchi, A. J., Hight Walker, A. R., ... & Tavazza, F. (2021). The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Computational Materials, 7(1), 12. https://doi.org/10.1038/s41524-021-00542-2
Index Terms

Computer Science
Information Sciences

Keywords

Machine learning deep learning perovskite materials property prediction materials informatics ALIGNN feature importance formation energy Debye temperature.