Abstract

A VB.NET class library has been developed for surface radio refractivity (Ns), reduced-to-sea-level refractivity (No) and modified refractivity (M). The class library contains
thirty functions, seven properties and five powerful methods which are polymorphized with at
least seven members each. Using our dynamic class library, an accurate, flexible and
windows-based software package was developed and applied to study radio refractivity at four
Meteorological stations in Nigeria. Calculated results were compared with other researchers’
works and found to be in agreement. Results from our application show that No values range
between 306-385 N-Units at Abuja site; 304-378 and 294-395 N-Units respectively at Enugu
and Sokoto sites. AkureFUTA site has the highest Ns value while Sokoto has the least value.
Other accurate results for all the sites were obtained for Ns and M. Software developers will find
our class library useful in their works, and the scientific community will benefit tremendously
from the use of our package.

Reference

- Adenugba, D.A. 2007. An Atomospheric Server For Some Atmospheric Parameters:
- Adeyemi Raimi, A. 1992. Seasonal and Diurnal Variations of Surface Radio Refractivity in
Akure, South-Western Nigeria. Unpublished M.TECH Thesis. The Federal University of
Technology, Akure.
Propagation Related To Satellite Communications In Tropical And Subtropical Countries. 5-90.
1-27.
- Owolabi, I.E. And Williams, V.A. 1970. Surface Radio Refractivity Patterns in Nigeria and
The Southern Cameroon’s J. West Africa Science Association. 15, 3–17.
- Rotheram, S. 1989. Clear Air Aspects of The Troposphere And Their Effects On
Propagation Mechanisms From VHF To Millimetre Wave. Radiowave Propagation. Peter
Peregrinus Ltd., 150-153.
- Smith, E.K and Weintraub, S. 1953. The Constants in The Equation For Atmospheric
Refractive Index At Radio Frequencies. Proc. IRE 41, 1033-1037.

Index Terms

Computer Science
Programming Languages
Key words

| Refractivity | Reduce to sea-level | Modified Refractivity | Surface |