Abstract

The mathematical model of immobilized enzyme system in porous spherical particle is presented. The model is based on non-stationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic reaction. A general and closed form of an analytical expression pertaining to the substrate concentration profile and effectiveness factor
are reported for all possible values of dimensionless modules and . Moreover, herein we have employed “Homotopy Perturbation Method” (HPM) to solve the non-linear reaction/diffusion equation in immobilized enzymes system. These analytical results were found to be in good agreement with simulation result.

Reference

- Ramachandran, P. A. (1975) Solution of immobilized enzyme problems by collocation
Analytical Expression Pertaining to Concentration of Substrate and Effectiveness Factor for Immobilized Enzymes with Reversible Michaelis Menten Kinetics

methods, Biotechnol. Bioeng. 17, 211-226
- He, J. H. (2005) Application of homotopy perturbation method to nonlinear wave

Index Terms

Computer Science

Applied Sciences

Key words

Diffusion-Reaction

Immobilised Enzymes

Modelling

Homotopy perturbation method

Biosensors

Michaelis-Menten kinetics

Effectiveness factor