Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to
automatically generate fuzzy rule base and fuzzy membership functions, which are iteratively adjusted by hybrid learning algorithm that combine the backpropagation gradient descent and least square method to create a fuzzy inference system. In the modeling task, the dynamics of the process is determined by Takagi-Sugeno fuzzy model in order to obtain a suitable structure for the ANFIS based Neurofuzzy controller. ANFIS is used to identify the twelve linear and sixteen nonlinear parameters that describe the behavior of the pH neutralization process. The resulting neurofuzzy controller is simulated by using reference model. Simulation results proved the tracking and adaptive capability of neurofuzzy system applied to pH neutralization process.

Reference

- Riid Andri and Rustern Ennu, “Comparison of fuzzy function approximators”, Dep. of Computer Control, Tallin Technical University, Ehitajate tee 5, EE0026, Tallinn, ESTONIA.
- Waller Jonas B. and Toivonen Hannu T., “A Neurofuzzy Model predictive Controller applied to a pH neutralization process”, Department of Chemical Engineering, Abo Akademi University, FI-20500 Abo,Finland
- Zhang Jie and Morris Julian, “Neuro-Fuzzy Networks for process Modelling and Model
based control”, Department of Chemical and Process Engineering , University of Newcastle, England.

Index Terms

Computer Science
Control Systems

Key words

pH neutralization
Adaptive Neuro Fuzzy Inference System