Abstract

The efficient detection of R-peaks in electrocardiogram (ECG) signal is extremely important for its further processing with regard to cardiac health monitoring. In this paper, an efficient R-peak
detection algorithm based on wavelet packets has been proposed. The wavelet packets decompose ECG signal into different frequency subbands of uniform bandwidth. The features evaluated from a set of subbands are combined with heuristic detection strategy for beat detection. The proposed R-peak detection algorithm was tested on different data records of standard data bases Fantasia database, MIT-BIH arrhythmia database and self-recorded signals. A sensitivity $S_e = 100\%$ and a positive predictivity of $+P = 100\%$ for Fantasia database and $S_e = 100\%$, $+P = 100\%$ for self-recorded signals and $S_e = 99.94\%$, $+P = 99.93\%$ for MIT-BIH arrhythmia database were achieved using this proposed algorithm.

References

- R.K Sunkaria, S.C. Sexena, V.Kumar and A.M.Singhal, “wavelet based R-peak detection for heart rate variability studies ” Journal of Medical Engineering and Technology, Vol. 00, No. 0, Month 2010, 1-8
- the research resource for complex physiologic, available at: signalswww.physionet.org

Index Terms

Computer Science

Signal Processing
Keywords

R-peak detection ECG Wavelet packets
Sensitivity
Positive predictivity