Inverse Circular Saw

International Journal of Computer Applications
© 2011 by IJCA Journal
Volume 36 - Number 8
Year of Publication: 2011
Gunjan Srivastava
Shafali Agarwal
Vikas Srivastava
Ashish Negi

Gunjan Srivastava, Shafali Agarwal, Vikas Srivastava and Ashish Negi. Article: Inverse Circular Saw. International Journal of Computer Applications 36(8):13-16, December 2011. Full text available. BibTeX

	author = {Gunjan Srivastava and Shafali Agarwal and Vikas Srivastava and Ashish Negi},
	title = {Article: Inverse Circular Saw},
	journal = {International Journal of Computer Applications},
	year = {2011},
	volume = {36},
	number = {8},
	pages = {13-16},
	month = {December},
	note = {Full text available}


Superior Mandelbrot set is the term, which Rani and Kumar used to make Circular Saw using complex polynomial equation zn+c .The objective of this paper is to analyze the fractals using same equation with condition; when n is negative.


  • Ashish Negi and Mamta Rani, A new approach to dynamic noise on superior Mandelbrot set, Chaos, Solitons & Fractals (2008)(36)(4), pp. 1089-1096.
  • B. B. Mandelbrot, The Fractal Geometry of Nature,W. H, Freeman Company, San Francisco, CA (1982).
  • C. Pickover, “Computers, Pattern, Chaos, and Beauty”, St. Martin’s Press, NewYork, 1990.
  • D. Ashlock, Evolutionary Exploration of the Mandelbrot Set, Proc. IEEE Congress on Evolutionary Computation, 2006, CEC 2006, pp. 2079-2086.
  • D. Rochon, A generalized Mandelbrot set for bicomplex numbers, Fractals 8(4)(2000), pp. 355-368.
  • M. Rani and V. Kumar, Superior Mandelbrot set, J. Korean Soc. Math. Edu. Ser. D (2004)8(4), pp. 279-291.
  • Mamta Rani, and Manish Kumar, Circular saw Mandelbrot sets, in: WSEAS Proc. 14th Int. conf. on Applied Mathematics (Math ’09): Recent Advances in Applied Mathematics, Spain, Dec 14-16, 2009, 131-136.
  • Mann,W.R. Mean Value Methods in Iteration. Proc. Amer. Math. Soc. 4,504-510.
  • Richard M. Crownover, Introduction to Fractals and Chaos, Jones & Barlett Publishers, 1995.
  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison- Wesley, 1992.
  • Shirriff, K.: An investigation of z←1/zn+c, Computers and Graphics 17 (Sep. 1993), no.5, 603-607.
  • U. G. Gujar, V. C. Bhavsar and N. Vangala, “Fractals from z←za+c in the Complex z - Plane”, Computers and Graphics 16, 1 (1992), 45-49.
  • U. G. Gujar, V. C. Bhavsar and N. Vangala, “Fractals from z←za+c in the Complex c-Plane”, Computers and Graphics 16, 1 (1992), 45-49.