Call for Paper - July 2022 Edition
IJCA solicits original research papers for the July 2022 Edition. Last date of manuscript submission is June 20, 2022. Read More

Buckling Studies on Laminated Composite Skew Plates

International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 37 - Number 1
Year of Publication: 2012
C.V. Srinivasa
Y.J. Suresh
W.P. Prema Kumar

C V Srinivasa, Y J Suresh and Prema W P Kumar. Article: Buckling Studies on Laminated Composite Skew Plates. International Journal of Computer Applications 37(1):35-47, January 2012. Full text available. BibTeX

	author = {C.V. Srinivasa and Y.J. Suresh and W.P. Prema Kumar},
	title = {Article: Buckling Studies on Laminated Composite Skew Plates},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {37},
	number = {1},
	pages = {35-47},
	month = {January},
	note = {Full text available}


This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to increase with the skew angle. When the number of layers in the laminate is large, the variation of critical buckling load factor (Kcr) with the number of layers is not appreciable.


  • Asthon, J.E.1969. Stability of clamped skew plates under combined loads. Journal of Applied Mechanics. 139-140.
  • Durvasula, S.1970. Buckling of clamped skew plates. AIAA Journal. 8(1).178-181.
  • Prabhu, M.S.S., and Durvasula, S. 1972. Stability of clamped skew plates. Applied Science research. 26. 255-271.
  • Srinivasan, R.S., and Ramachandran, S.V. 1976. Stability of generally orthotropic skew plate. Journal of the Engineering Mechanics Division. 102(EM3). 569-572.
  • Kennedy, J.B., and Prabhakara, M.K. 1978. Buckling of simply supported orthotropic skew plates. Aeronautical Quarterly. 161-174.
  • Mizusawa, T., Kajita, T., and Naruoka, M. 1980. Buckling of skew plates structures using B-spline functions. International Journal for Numerical Methods in Engineering.15. 87-96.
  • Kamal, K., and Durvasula, S. 1991. A continuum solution to the problems of composite laminate analysis. Defense Science Journal. 41(1). 69-77.
  • Kitipornchai, S., Xiang, Y., Wang, C.M., and Liew, K.M. 1993. Buckling of thick skew plates. International Journal for Numerical Methods in Engineering. 36.1299-1310.
  • York, C.B., and Williams, F.W. 1995. Buckling analysis of skew plate assemblies: Classical plate theory results incorporating lagrangian multipliers. Computers and Structures. 56(4).625-635.
  • Jaunky, N., Norman, F. Knight Jr., and Ambur, D.R. 1995. Buckling of arbitrary quadrilateral anisotropic plates. AIAA Journal. 2414-2417.
  • Wang, S. 1997. Buckling of thin skew fibre-reinforced composite laminates. Thin Walled Structures. 28(1).21-41.
  • Azhari, M., Shahidi, A.R., and Saadatpour, M.M. 2004. Post local buckling of skew and trapezoidal plates” Advances in Structural Engineering. 7(1).61-70.
  • Pannok, C., and Singhatanadgid, P. 2006. Buckling analysis of composite laminate rectangular and skew plates with various edge support conditions. The 20th Conference of Mechanical Engineering Network of Thailand .18-20.
  • Fried, I., and Schmitt, K. 1972. Numerical results from the application of gradient iterative techniques to the finite element vibration and stability analysis of skew plates. Aeronautical Journal. 76. 166–169.
  • Bucco, D., and Mazumdar, J. 1984. Buckling analysis of plates of arbitrary shape. Journal of Australian mathematical society. Serial B26. 77-91.
  • Lee, Y.J., Lin, H.J, and Lin, C.C. 1989. Buckling analysis of composite laminates. Composite Structures. 12.133-148.
  • Liao, C.L., and Lee, Z.Y. 1993. Elastic stability of skew laminated composite plates subjected to biaxial follower forces. International Journal for Numerical Methods in Engineering. 36. 1825-1847.
  • Krishna Reddy, A.R., and Palaninathan, R. 1995. Buckling of laminated skew plates. Thin Walled Structures. 22 .241-259.
  • Wang, S. 1997. Buckling analysis of skew fibre-reinforced composite laminates based on first-order shear deformation theory” Composite Structures. 37(1).5-19.
  • Sarath Babu, C., and Kant, T. 1999. Two shear deformable finite element models for buckling analysis of skew fibre-reinforced composite and sandwich panels. Composite Structures. 46(2).115-124.
  • Hu, H.T., and Tzeng, W.L. 2000. Buckling analysis of skew laminate plates subjected to uniaxial inplane loads. Thin-Walled Structures. 38. 53-77.
  • Kant, T. and Babu, C.S. 2000. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Structures.49. 77-85.
  • Huyton, P., and York, C.B. 2001. Buckling of skew plates with continuity or rotational edge restraint. Journal of Aerospace Engineering. 92-101.
  • Singha, M.K, Ramachandra, L.S., and Bandyopadhyay, J.N. 2001. Thermal post buckling analysis of laminated composite plates. Composite Structures.54. 453-458.
  • Singha, M.K., Ramachandra L.S., and Bandyopadhyay, J.N. 2001. Stability and strength of composite skew plates under thermo mechanical loads. AIAA Journal. 39(8). 1618-1623.
  • Huyton, P., and York, C.B. 2002. Buckling of skew plates with planform taper. AIAA Journal. 1572-1581.
  • Ganapathi, M., Prakash, T., and Sundararajan, N. 2006. Influence of functionally graded material on buckling of skew plates under mechanical loads. Journal of Engineering Mechanics. 132(8). 902-905.
  • Hsuan-The, Hu. Chia-Hao Yang, and Fu-Ming Lin. 2006. Buckling analyses of composite skew plates with material nonlinearity. Composites: Part B.37. 26-36.
  • Partha, Dey, and Singha, M.K. 2006. Dynamic stability analysis of composite skew plates subjected to periodic in-plane load. Thin-walled structures. 44.937-942.
  • Chakrabarti, A., and Sheikh, A.H. 2007. Buckling of laminated sandwich plates using an efficient plate model. International Shipbuilding Progress. 54.63-81.
  • Prakash, T., Singha, M.K., and Ganapathi, M. 2008. Thermal post buckling analyses of FGM skew plates. Engineering Structures. 30. 22–32.
  • Civalek, O. 2007. Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elements in Analysis and Design. 43.1013-1022.
  • Rupesh, D., and Singha, M.K. 2009. Influence of corner stresses on the stability characteristics of composite skew plates. International Journal of Non-Linear Mechanics. 44. 138- 146.
  • Thangam Babu, P.V., and Reddy, D.V. 1978. Stability analysis of skew orthotropic plates by the finite strip method. Computers and Structures. 8. 599-607.
  • Tham, L.G., and Szeto, H.Y. 1990. Buckling analysis of arbitrarily shaped plates by spline finite strip method. Computers and Structures. 36(4).729-735.
  • Mizusawa, T., and Kajita, T. 1986. Vibration and buckling analysis of skew plates with edges elastically restrained against rotation. Computers and Structures. 22(6).987-994.
  • Darvizeh, M., Darvizeh, A, and Sharma, C.B. 2002. Buckling analysis of composite plate using differential quadrature method. Steel and Composite Structures. 2(2). 99-122.
  • Wang, X., Tan, M., and Zhou, Y. 2003. Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method. Thin-Walled Structures. 41. 15-29.
  • Karami, G., Ali Shahpari, S., and Malekzadeh, P. 2003. DQM analysis of skewed and trapezoidal laminated plates. Composite Structures.59.393-402.
  • Civalek, O. 2004. Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Engineering Structures.26. 171–186.
  • Jones, R.M. 1975. Mechanics of Composite Materials. New York: McGraw-Hill.