Different signal processing transforms provide us with unique decomposition capabilities. Instead of using specific transformation for every type of signal, we propose in this paper a novel way of signal processing using a group of transformations within the limits of Group theory. For different types of signal different transformation combinations can be chosen. It is found that it is possible to process a signal at multiresolution and extend it to perform edge detection, denoising, face recognition, etc by filtering the local features. For a finite signal there should be a natural existence of basis in it’s vector space. Without any approximation using Group theory it is seen that one can get close to this finite basis from different viewpoints. Dihedral groups have been demonstrated for this purpose.

References

G-Lets: A New Signal Processing Algorithm

- Dresselhaus, M. S., 2008 Group Theory, Springer.
- Assefa, D., Mansinha, L., Tiampo, K. F., Rasmussen, H., and Abdella, K., 2010 Local quaternion Fourier transform and color image texture analysis, Signal Processing,
G-Lets: A New Signal Processing Algorithm

90,1825-1835, June.
- Stankovic, R. S., Moraga, C., and Astola, J., 1999 Readings in Fourier Analysis on Finite Non-Abelian Groups, TICSP Series, Sharp5, September.

Index Terms

Computer Science
Signal Processing

Keywords
signal processing transformation groups group theory multiresolution analysis