Abstract

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power systems model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as local stability analysis. High performances are illustrated through a real time application on 5 buses test system with DSP device (Dspace DS1104).

References

 Methods and Evaluation of Stability and Speeds Computing. Int. Rev. of Electr. Eng., 5,
 1110–1118.
- Scholtz E. 2004. Observer based monitors and distributed wave controllers for
electromechanical disturbances in power systems. Doctoral Thesis, Massachusetts Institute
Technology, USA.
- Da?e C.J. 2005. An observability formulation for nonlinear power systems modeled as
differential algebraic systems. Doctoral Thesis, Drexel university, PA, USA.
- Debes A.S. and Larson R.E. 1970. A dynamic estimator for tracking the state of a
Automatica. 42, 959–965.
estimation of electric power systems. In Electrotechnical Conference, 7th Mediterranean,
Antalya, Turkey, 877–880.
- Shih K. and Huang S. 2002. Application of a robust algorithm for dynamic state
harmonic state estimation and harmonic injection tracking. IEEE Trans. on Power Delivery. 20,
1577–1584.
- Ma H. and Grigis A. 1996. Identi?cation and tracking of harmonic sources in a power
- Chowdhury F., Christensen J. and Aravena J. 1991. Power system fault detection and
state estimation using kalman ?Iter with hypothesis testing. IEEE Trans. on Power Delivery. 6,
1025–1030.
- Roytelman I. and Shahidehpour S. 1993. State estimation for electric power distribution
- Gordon B.W. 2003. Dynamic sliding manifolds for realization of high index
in power systems. IEEE Trans. on Power Syst. 9, 157–166.

Index Terms

Computer Science\hspace{3cm} Power Systems

Keywords

Power system dynamics \hspace{1cm} Extended Kalman Filter \hspace{1cm} convergence analysis \hspace{1cm} Time computing