Abstract

Operational transconductance amplifier (OTA) is one of the most significant building-blocks in integrated discrete-time filters used in analog to digital converter (ADC) for Sigma-delta converter. In this paper we designed a novel design method of two-stage CMOS amplifier in AMS 0.35\(\mu\)m technology. P-Spice simulation results confirm the proposed OTA circuit. In fact, we achieved a gain bandwidth (GBW) equal to 55 MHz, Cut-off frequency of 85 KHz and 57 dB gain (Av). In addition our new method allowed us to reduce settling time (St) to 15.6 ns and a slew rate (SR) of 0.1 V/\(\mu\)s at ±1.5V supply voltage. Eventually we have also succeeded in reducing the average power consumption to 1.65 mW while driving 3 pF load capacitor.

References

- Faouzi Chaahoub : "Etude des methodes de conception et des outils de CAO pour la synthes est des circuits integrés analogique" thèse doctorat à l’institut national polytechnique de grenoble 1999
- Dr. Yannick HERVE : Cours d’Electronique Numérique et de méthodologie de CAO Electronique Conception des système complexes. -mise à jour le 01/03/2010

Index Terms

Computer Science
Circuits and Systems

Keywords

Wireless sensor
Operational amplifier
CMOS OTA Design