CFP last date
20 May 2024
Reseach Article

A Novel Approach to use ZnO Thin Film as a Switching in Dynamic Random Access Memory (DRAM) Cell

by Amit Kumar, Deepak Chaudhary, Manoj Kumar, Beer Pal Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 44 - Number 2
Year of Publication: 2012
Authors: Amit Kumar, Deepak Chaudhary, Manoj Kumar, Beer Pal Singh
10.5120/6232-7454

Amit Kumar, Deepak Chaudhary, Manoj Kumar, Beer Pal Singh . A Novel Approach to use ZnO Thin Film as a Switching in Dynamic Random Access Memory (DRAM) Cell. International Journal of Computer Applications. 44, 2 ( April 2012), 1-4. DOI=10.5120/6232-7454

@article{ 10.5120/6232-7454,
author = { Amit Kumar, Deepak Chaudhary, Manoj Kumar, Beer Pal Singh },
title = { A Novel Approach to use ZnO Thin Film as a Switching in Dynamic Random Access Memory (DRAM) Cell },
journal = { International Journal of Computer Applications },
issue_date = { April 2012 },
volume = { 44 },
number = { 2 },
month = { April },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume44/number2/6232-7454/ },
doi = { 10.5120/6232-7454 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:34:28.688352+05:30
%A Amit Kumar
%A Deepak Chaudhary
%A Manoj Kumar
%A Beer Pal Singh
%T A Novel Approach to use ZnO Thin Film as a Switching in Dynamic Random Access Memory (DRAM) Cell
%J International Journal of Computer Applications
%@ 0975-8887
%V 44
%N 2
%P 1-4
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Resistance switching random access memory (RRAM) has drawn considerable attention for the application in non- volatile memory element in semiconductor memory devices. A ZnO thin film now assumed to be useful for dynamic random access memory (DRAM) cell. In this paper we provide a framework to its use as a switching ON or OFF in DRAM cell. In this type of memory cell the ZnO thin film has a lot of importance instead of a transistor. Inside the DRAM cell, we are suggested to use the ZnO thin film due to its reliable and repeated switching of the resistance. Thus after the replacement of ZnO thin film as a switching element instead of a transistor, the DRAM cell has a strong resistance switching capability.

References
  1. K. M. Kim and C. S. Hwang, 2009. The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl. Phys. Lett. 94 (Mar. 2009) 122109-1-122109-3.
  2. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, 2005. Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98 (Aug. 2005) 033715-1-033715-10.
  3. R. Waser and M. Aono, 2007. Nanoionics-based resistive switching memories. Nat. Mater. 6 (2007) 833-840.
  4. J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. Stanley Williams, 2009. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20 (May 2009) 215201.
  5. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, 2008. The missing memristor found. Nature 453(May2008) 80-83.
  6. D. S. Jeong, H. Schroeder, and R. Waser, 2009. Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell. Phys. Rev. B 79 (May 2009) 195317.
  7. W. Wang, S. Fujita, and S. S. Wong, 2009. RESET Mechanism of TiOx Resistance-Change Memory Device IEEE Electron Device Lett. 30 (July 2009) 733-735.
  8. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, 2004. Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti?Pr0. 7Ca0. 3MnO3 interface. Appl. Phys. Lett. 85 (Sept. 2004) 4073-4075.
  9. J. Choi, J. Song, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, Y. H. Do, J. S. Kwak, and J. Hong, 2009. Bipolar resistance switching characteristics in a thin Ti–Ni–O compound film. Nanotechnology 20 (April 2009) 175704.
  10. K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, 2007. Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films Appl. Phys. Lett. 91 (July 2007) 012907-1-012907-3.
  11. W. -H. Tzeng, C. -W. Zhong, K. -C. Liu, K. -M. Chang, H. -C. Lin, Y. -C. Chan, C. -C. Kuo, F. -Y. Tsai, M. H. Tseng, P. -S. Chen, H. -Y. Lee, F. Chen and M. -J. Tsai, 2012. Resistive switching characteristics of multilayered (HfO2/Al2O3)n n = 19 thin film. Thin Solid Films 520 (2012) 3415-3418.
  12. L. M. Kukreja, A. K. Das and P. Mishra, 2009. Studies on nonvolatile resistance memory switching in ZnO thin films. Bull. Mater. Sci. 32 (June 2009) 247-252.
  13. H. Shima, N. Zhong, and H. Akinaga, 2009. Switchable rectifier built with Pt/TiOx/Pt trilayer. Appl. Phys. Lett. 94 (Feb. 2009) 082905-1-082905-3.
  14. C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, 2007. Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2. IEEE Trans. Electron Devices 54 (Oct. 2007) 2762-2768.
  15. Y. Nakamura, T. Harada, H. Kuribara, A. Kishimoto, N. Motohira, and H. Yanagida, 1999. Nonlinear Current-Voltage Characteristics with Negative Resistance Observed at ZnO-ZnO Single-Contacts. J. Am. Ceram. Soc. 82 (1999) 3069-3074.
  16. J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, J. H. Yang, and K. S. Lim, 2011. A ZnO cross-bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect Appl. Phys. Lett. 98 (June 2011) 233505-1-233505-3.
  17. J. Qiu, A. Shih, W. Zhou, Z. Mi, and I. Shih, 2011. Effects of metal contacts and dopants on the performance of ZnO-based memristive devices. J. Appl. Phys. 110 (July 2011) 014513-1-014513-5.
  18. N. Fujimura, T. Nishihara, S. Goto and J. Xu, 1993. Control of preferred orientation for ZnOx films: control of self-texture J. Cryst. Growth 130 (May 1993) 269-279.
  19. Y. E. Lee, Y. J. Kim and H. J. Kim, 1998. Thickness dependence of microstructural evolution of ZnO films deposited by rf magnetron sputtering. J. Mater. Res. 13 (1998) 1260-1265.
  20. C. Jin, R. Narayan, A. Tiwari, H. Zhou, A. Kvit and J. Narayan, 2005. Epitaxial growth of zinc oxide thin films on silicon. Materials Sci. Eng. (B), 117 (March 2005) 348-354.
  21. S. O. Kucheyev, C. Jagadish, J. S. Williams, P. N. K. Deenapanray, M. Yano and K. Koike, 2003. Implant isolation of ZnO. J. Appl. Phys. 93 (2003) 2972-2976.
  22. E. M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, 1999. Structural and optical properties of sputtered ZnO films. Thin Solid Films 348 (Jan. 1999) 165-172.
  23. W. Water, S. Y. Chu, 2002. Physical and structural properties of ZnO sputtered films. Mater. Lett. 55 (2002) 67-72.
  24. J. J. Zhu, B. X. Lin, X. K. Sun, R. Yao, C. S. Shi, Z. X. Fu, 2005. Heteroepitaxy of ZnO film on Si (111) substrate using a 3C–SiC buffer layer. Thin Solid Films 478 (2005) 218-222.
  25. Y. I. Alivov, J. E. V. Nostrand, D. C. Look, M. V. Chukichev, B. M. Ataev, 2003. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 83 (2003) 2943-2945.
  26. N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M. S. Aida, M. Jacquet, 2006. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation Appl. Surf. Sci. 252 (Jan. 2006) 5594-5597.
  27. Y. Zhang, B. X. Lin, X. K. Sun, Z. X. Fu, 2005. Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol–gel process. Appl. Phys. Lett. 86 (March 2005) 131910-131912.
  28. T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, H. Mutoa, 2002. Improvement in the crystallinity of ZnO thin films by introduction of a buffer layer Thin Solid Films 411 (2002) 60-64.
  29. J. M. Bian, X. M. Li, C. Y. Zhang, L. D. Chen, Q. Yao, 2004. Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis Appl. Phys. Lett. 84 (April 2004) 3783-3785.
  30. R. Al Asmar, G. Ferblantier, F. Mailly, P. Gall- Borrut and A. Foucaran, 2004. Effect of annealing on the electrical and optical properties of electron beam evaporated ZnO thin films. Thin Solid Films 473 (2005) 49-53.
  31. B. J. Jin, S. H. Bae, S. Y. Lee and S. Im, 2000. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition. Mater Sci. Eng. (B) 71 (2000) 301-305.
  32. W. C. Shin and M. S. Wu, 1994. Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications. J. Cryst. Growth 137 (1994) 319-325.
  33. K. S. Weissemrider and J. Muller, 1997. Conductivity model for sputtered ZnO-thin film gas sensors. Thin Solid Films 300 (1997) 30-41.
  34. M. S. Roman Chala, A. Rohatgi, W. B. Carter, J. P. Sharffer and T. K. Gupta, 1995. Photoluminescence study of ZnO varistor stability. J. Electron. Mater. 24 (1995) 413-419.
  35. A. Kumar, M. Kumar and B. P Singh, 2011. Nonvolatile resistance memory switching in polycrystalline ZnO thin films grown by RF magnetron sputtering. Int. J. Adv. Eng. Sci. & Technol. 1 (2011) 118-122.
Index Terms

Computer Science
Information Sciences

Keywords

Zno Thin Film Resistance Switching Dram