Abstract

Multipliers and adders are the most significant part of all data path circuits in the microprocessor and digital signal processor. The power and speed of the multiplier and adder affects the entire performance of the system. In this paper, low power multiplier using Hybrid adder is proposed. Also it presents the analysis of three modified multipliers: Braun array multiplier, Baugh Wooley array multiplier, and CSA Multiplier with optimized adders. The multipliers are designed with optimized Hybrid and other adders using transistor sizing technique. The performance of power and delay of the multipliers are analyzed with optimization. All circuits are implemented in HSPICE BSIM model at 90nm deep submicron technology.

References

- Massoud Pedram, 1995 Design Technologies for Low Power VLSI, Encyclopedia of Computer Science and Technology,
Analysis and Comparison Dynamic Power Consumption of 8-Bit Multipliers for Low Power Application

Automation of Electronic Systems, Vol 1, No. 1, pp. 3-56
- J. P. Fishburn and A. E. Dunlop, 1985, TILOS: a posynomial programming approach to transistor sizing, in Proceedings of the International Conference on computer Aided Design (ICCAD '85)
- Massimo Alioto, Gaetano Palumbo, Analysis and Comparison on Full Adder Block in Submicron Technology, IEEE TRANS, ON VLSI SYSTEMS, Vol. 10, No. 6, December, Pp 806-822
- C. Senthil pari et al. 2008 Design of a low power high performance 8_8 multiplier using a Shannon-based adder cell Shannon-based adder cell, Micro electronics journal, pp812-821

Index Terms

Computer Science Integrated Circuits
Keywords
Dynamic Power Cmosfa Lpfa Tgfa Tgdcfa Sfa Cpl