Abstract

In the previous works it has been observed that a frequent item set mining algorithm are supposed to mine the closed ones as the finish results in a compact and a complete progress set and enhanced potency. However, the latest closed item set mining algorithms works with both candidate maintenance and check paradigm hand in hand, which proves to be friendlier in runtime, as in case of area usage when support threshold is a reduced entity or the item sets gets long. In this paper, we have shown, CEG&REP with CSM (Counter Support Measurement) that is supposed to be a more efficient approach which can be utilized for mining articulate association rules from closed sequences. This approach outfits a exclusive rule coherency checking format with CSM, further that is laid mostly on another approach termed as Sequence Graph protruding which is termed as "Concurrent Edge Prevision and Rear Edge Pruning", hereby referred as CEG&REP. Moreover, we have pronounced a novel CSM methodology to crop rules which in turn seems to formulate articulate rules. The performance of CEG&REP with CSM (Counter Support Measurement) is tested on a whole observation having scrubby and dense real-life information, the tests have shown that approach of CEG&REP performs in a more efficient manner as compared to the previous versions as the
CEG&REP approach takes less memory space and is swifter than the algorithms which were used in past works.

References

- J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, FreeSpan: Frequent pattern-projected sequential pattern mining. In SIGKDD’00, Boston, MA, Aug. 2000.
- J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE’01, Heidelberg, Germany, April 2001.
- J. Pei, J. Han, and W. Wang, Constraint-based sequential pattern mining in large databases. In CIKM’00, McLean, VA, Nov. 2002.
- J. Han, G. Dong, and Y. Yin, Efficient mining of partial periodic patterns in time series database. In ICDE’00, Sydney, Australia, Mar. 1999.
- J. Yang, P. S. Yu, W. Wang and J. Han, Mining long sequential patterns in a noisy environment. In SIGMOD’02, Madison, WI, June 2002.
- X. Yan, J. Han, and R. Afshar, CloSpan: Mining Closed Sequential Patterns in Large Databases. In SDM’00, San Francisco, CA, May 2003.
- J. Wang, J. Han, and J. Pei, CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In KDD’03, Washington, DC, Aug. 2003.
- J. Pei, J. Han, and R. Mao, CLOSET: An efficient algorithm for mining frequent closed
itemsets. In DMKD'01 workshop, Dallas, TX, May 2001.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov, Mining Top-K Frequent Closed Patterns without Minimum Support. In ICDM'02, Maebashi, Japan, Dec. 2002.
- Jianyong Wang, Jiawei Han: BIDE: Efficient Mining of Frequent Closed Sequences. ICDE 2004: 79-90
- Anurag Choubey, Dr. Ravindra Patel and, Dr. J. L. Rana. Article: Frequent Pattern Mining With Closeness Considerations: Current State Of The Art. GJCS Issue 11, Volume 17, August 2011. Published by Global Journals, 25200 Carlos Bee Blvd. #495, Hayward, CA 94542, USA Published by Foundation of Computer Science, New York
- J. Li; On Optimal Rule Discovery; IEEE Trans. Knowledge and Data Eng. vol. 18, no. 4, pp. 460-471, Apr. 2006.
http://archive.ics.uci.edu/ml/datasets/
Anurag Choubey, Dr. Ravindra Patel, Dr. J. L. Rana "Concurrent Edge Prevision and Rear Edge Pruning Approach for Frequent Closed Itemset Mining"; IJACSA, Volume 2 No. 11, November 2011

Index Terms
Computer Science Data Mining

Keywords
Counter Support Measurement Csm Concurrent Edge Prevision And Rear Edge Pruning Ceg&rep Gazelle