Abstract

Most of the fragile watermarking scheme authenticate the user but unable to locate the region of tampering. The objective of proposed scheme is not only maintaining the quality of watermark 3D object at its acceptable level but also identify the region of tampering. During the process of watermarking embedding the normal distance of each vertex from center of mass is calculated and marked vertices are converted into IEEE-754 floating point representation in double precision. Cryptographic hash function is applied to find the mark vertices. The watermark is inserted in each of the segments of 3D model so that authentication may be done through any of the segment. Fragile watermarking technique is used for authentication in case of multiple user claims for the single object. It is very important to protect and authenticate the 3D model.

References

- Ohbuchi R, Hiroshi Masuda, Masakionom " Watermarking Three-Dimensional
Double Security Watermarking Algorithm for 3D Model using IEEE-754 Floating Point Arithmetic

- Wagner et al. Robust watermarking of polygonal meshes; Geometric Modeling and Processing, 2000 Hong Kong.
- Paun E, Hoppe H, Finkestein A. Robust mesh Watermarking; In ACM siggraph proc 1999.
- Hoppe H. Progressive mesh; In ACM siggraph proc 1996
- Yeo BL, Yeung MM. Watermarking 3D object for verification; IEEE Computer Graph Appl 1999;19:36-45
- M. Barni, F. Bartolini, V. Cappellini, M. Corsini, and A. Garzelli. Digital watermarking of 3D meshes; SPIE proceedings series, SPIE, Bellingham WA, 2004
- Chou CM, Tseng DC. A Public Fragile Watermarking Scheme for 3D model authentication; Computer-Aided Design 2006;38(11):1154-65

Index Terms

Computer Science
Security
Keywords
Copyright Protection Hash Function Payload Cover Object