Analysis of a Modern Voice Morphing Approach using Gaussian Mixture Models for Laryngectomees

Volume 49 - Number 21
Year of Publication: 2012

Authors:
Aman Chadha
Bharatraaj Savardekar
Jay Padhya

Abstract

This paper proposes a voice morphing system for people suffering from Laryngectomy, which is the surgical removal of all or part of the larynx or the voice box, particularly performed in cases of laryngeal cancer. A primitive method of achieving voice morphing is by extracting the source's vocal coefficients and then converting them into the target speaker's vocal parameters. In this paper, we deploy Gaussian Mixture Models (GMM) for mapping the coefficients from source to destination. However, the use of the traditional/conventional GMM-based mapping approach results in the problem of over-smoothening of the converted voice. Thus, we hereby propose a unique method to perform efficient voice morphing and conversion based on GMM, which overcomes the traditional-method effects of over-smoothening. It uses a technique of glottal waveform separation and prediction of excitations and hence the result shows that not only over-smoothening is eliminated but also the transformed vocal tract parameters match with the target. Moreover, the synthesized speech thus obtained is found to be of a sufficiently high quality. Thus, voice morphing based on a unique GMM approach has been proposed and also critically evaluated based on various subjective and objective evaluation parameters. Further, an application of voice morphing for
Laryngectomees which deploys this unique approach has been recommended by this paper.

References

- Bradbury J. , ”Linear Predictive Coding”, December 5, 2000.
- Gundersen, T. , ”Voice Transformation based on Gaussian mixture models”, Master of Science in Communication Technology Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2010, 55.
- Cliff M. , ”GMM and MINZ Program Libraries for Matlab”, Krannert Graduate School of Management, Purdue University, March 2, 2003.

Index Terms

Computer Science
Signal Processing

Keywords

Voice Morphing Laryngectomy Gaussian Mixture Models