Call for Paper - January 2024 Edition
IJCA solicits original research papers for the January 2024 Edition. Last date of manuscript submission is December 20, 2023. Read More

On Laplacian Energy of Certain Mesh Derived Networks

International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 55 - Number 11
Year of Publication: 2012
Bharati Rajan
Albert William
Sudeep Stephen
Cyriac Grigorious

Bharati Rajan, Albert William, Sudeep Stephen and Cyriac Grigorious. Article: On Laplacian Energy of Certain Mesh Derived Networks. International Journal of Computer Applications 55(11):9-13, October 2012. Full text available. BibTeX

	author = {Bharati Rajan and Albert William and Sudeep Stephen and Cyriac Grigorious},
	title = {Article: On Laplacian Energy of Certain Mesh Derived Networks},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {55},
	number = {11},
	pages = {9-13},
	month = {October},
	note = {Full text available}


Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The multiset of eigenvalues is called its spectrum. There are many properties which can be explained using the spectrum like energy, connectedness, vertex connectivity, chromatic number, perfect matching etc. Laplacian spectrum is the multiset of eigenvalues of Laplacian matrix. The Laplacian energy of a graph is the sum of the absolute values of its Laplacian eigenvalues. In this paper we calculate the Laplacian energy of some grid based networks


  • Biggs, N. (1993). L. Algebraic Graph Theory. Cambridge University Press, Cambridge. 2nd ed. ,.
  • Chung, F. R. (1994). Spectral Graph Theory. American Mathematical Society.
  • Gutman, I. (1976). A graph theoretical study of conjugated systems containing a linear polyene fragments. Croat. Chem. Acta. 48(2), 97-108,.
  • Ramane, Walikar, Rao, Acharaya, Gutman, Hampiholi, (2004). Equienergetic graph. Kragujevac. J. Math. ,26, 5-13.
  • Indulal, G. , Vijayakumar (2002). Equienergetic self-complimentary graphs. Czechoslovak Math. J,.
  • Gutman, I. , Zare Firoozabadi, J. A. de la Pe?a, Rada (2007). On the energy of regular graphs. MATCH Commun. Math. Comput. Chem. , 57, 435-442.
  • Balakrishnan, R (2004). The energy of a graph. Linear Algebra Appl. 387, 287-295.
  • Gutman, I. (1978). The energy of a graph. Ber. Math. Stat. Sekt. Forschungszenturm Graz. 103, 1- 22.
  • Gutman, I. , Milun, Trinajsti? (1972). H?ckel Molecular Orbital Calculations of Aromatic Stabilization of Annulenes. Croat. Chem. Acta. 44, 207-213.
  • Indulal,G. , Vijayakumar (2006). On a pair of equienergetuc graphs. MATCH Commun. Math. Comput. Chem. . 55, 83- 90.
  • Indulal, G. , Vijayakumar (2008). A note on energy of some graphs. MATCH Commun. Math. Comput. Chem. , 59, 269- 274.
  • M. Fiedler (1973). Algebraic connectivity of graphs, Czech. Math. J. , 23 (98), 298-305.
  • Gutman I, Zhou B. (2006). Laplacian energy of a graph, Linear Algebra and its Applications, 414, 29-37,.
  • Collatz L. , Sinogowitz U. (1957). Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg. 21, 63-77,.
  • Cvetkovi´c, D. M. , Doob, M. , Sachs, H. (1995) Spectra of graphs. Johann Ambrosius Barth Verlag, Third edition.
  • Kasteleyn (1967). Graph theory and crystal psysics. Graph theory and theoretical physics (ed. F. Harary), London, 43-110,.
  • Montroll, E. W. (1964). Lattice statistics. Applied combinatorial mathematics. Wiley, New York,(E. F. Becken-bach, Ed. ), 96-143.
  • Percus, J. K. (1969). Combinational Methods. Springer-Verlag. Berlin-Heidelberg-New York.
  • Tinkler, K. (1972). The physical interpretation of eigenvalues of dichotomous matrix. Inst. Brit. Geogr. Puli. , 55, 17-46.
  • Roberts, F. (1978). Graph Theory and Its Applications to Problems of Society. Soc. Ind. App. Math. ,Philadelphia.