Call for Paper - January 2024 Edition
IJCA solicits original research papers for the January 2024 Edition. Last date of manuscript submission is December 20, 2023. Read More

PromChoq: A Multicriteria Decision Aid Method for Actions Ranking

International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 55 - Number 6
Year of Publication: 2012
Saddek Benabied
Salsabile Goucem
Hakim Bendjenna

Saddek Benabied, Salsabile Goucem and Hakim Bendjenna. Article: PromChoq: A Multicriteria Decision Aid Method for Actions Ranking. International Journal of Computer Applications 55(6):45-52, October 2012. Full text available. BibTeX

	author = {Saddek Benabied and Salsabile Goucem and Hakim Bendjenna},
	title = {Article: PromChoq: A Multicriteria Decision Aid Method for Actions Ranking},
	journal = {International Journal of Computer Applications},
	year = {2012},
	volume = {55},
	number = {6},
	pages = {45-52},
	month = {October},
	note = {Full text available}


Ranking available actions or alternatives with respect to multiple, often conflicting criteria is a problem of a major interest in information and engineering. Methodologies for addressing this problem have been developed from a variety of research disciplines. An investigation of existing methods shows that most existing methods suffer various drawbacks. These shortcomings include the non consideration of interactions or dependencies between criteria. To avoid it, we present in this paper, a multicriteria decision aid method for alternatives ranking called PromChoq. PromChoq is based on Promethee method, a well known multicriteria outranking method. To consider interaction between criteria, we introduce Choquet integral and ?-fuzzy measure. In order to facilitate to decision maker using PromChoq, we developed a tool which supports its main concepts. Finally, to exploit our contribution and to show its effectiveness, an empirical study of a real selection problem (teacher's selection in recruitment test) in the University of Tebessa in Algeria is presented.


  • G. Choquet, Theory of capacities, Annales de l'Institut Fourier 5, 131–295. 1953.
  • L. S. Shapley, A value for n-person games. In: H. W. Kuhn and A. W. Tucker (eds. ), Contributions to the Theory of Games, Vol. II, Annals of Mathematics Studies, 28, (Princeton University Press, Princeton, NJ,), 307–317. 1953.
  • Von Neumann- Morgenstern, theory of' Gcrrnes and Econornic Behavior. Princeton University Press, Princeton. NJ. 1964.
  • Benayoun et al, Linear Programming with Multiple Objective Functions: Step Method (STEM) , math. Programming. 366-375. 1971.
  • Zionts-Wallenius, wallenius. AUD J. WALLEKIU, An Interactive Programing Method for Solving the Multiple Criteria Problem. management Sci. . 22 652-663. 1976.
  • Keeney et Raïffa,D écisions with multiple objectives: preference and value tradeoffs, Series in probability and mathématical statistics, New York, 1976.
  • Saaty, the Analytic hierarchy Process, McGrau-Hill, New York. 1980.
  • B. Roy, 1985, Méthodologie multicritère d'aide à la décision, 1er Ed, Economica, Paris, 1985.
  • Alain Schärlig, Décider sur plusieurs critères: Panorama de l'aide à la décision multicritère, 1er Ed, Presse polytechniques romandes, Suisse, 1985.
  • Brans, J. P. and Vincke, P. H. "A preference ranking organization method: The PROMETHEE method for multiple criteria decision-making", Management Science, 31, 647-656.
  • Jacquet-Lagrèze, Meziani et Slowinski, "Assessing a Set of Additive Utility Functions for Multicriteria Decision-Making. The UT4 Method," Eiiroiiearl J. Oper. Res. . 10. 151- 164. 1982.
  • M. R. Mahmoud and L. Garcia, Comparison of different multicriteria evaluation methods of the Red Bluff Diversion Dam, Environmental Modeling and Software 15(5) (2000) 471–478.
  • VINCKE, P. "L'aide multicritère à la décision". Bruxelles : Editions de l'Université de Bruxelles, 179 p. 1989.
  • B. Roy, 1992: Cahiers du Lamsade n°97, Univ. Paris-Dauphine, 1992.
  • B. ROY, 1993b : B. Roy, "Aide multicritère à la décision: methodes et cas", Economica, Paris, 1993.
  • Murofushi, T. and Sugeno, M. "A Theory of Fuzzy Measures Representations, the Choquet Integral and Unll Sets", Journal of Mathematical Analysis and Application Vol. 159, No. 2,pp. 532-549. 2005.
  • Saaty, T. L. , "Theory and Applications of the Analytic Network Process", RWS Publications, Pittsburgh, USA, ISBN: 1-888603-06-2, 2005.
  • Alain Schärlig, "Pratiquer Electre et Prométhée: un complément à décider sur plusieurs critères", Presses polytechniques et universitaires romandes, 1er Ed, Paris, 1996.
  • A. Albadvi, S. K. Chaharsooghi and A. Esfahanipour, Decision making in stock trading: An application of PROMETHEE, European J. Operational Research 177(2) (2007) 673–683.
  • J. -L. Marichal, « Agregation operators for multicreteria decision aid », Thèse de doctorat. Univ. De Liege. 258p, 1999.
  • S. Ben Mena, « Introduction aux méthodes multicritères », Biotechnol Agron. Soc. Environ, 2000.
  • Takahagi, Eiichiro: "On Identification methods of ?- fuzzy measures using weights and ?", Japanese Journal of Fuzzy Sets and Systems, vol. 12, no. 5, 665- 676, 2000.
  • Kaynak, T, Human Resources Management, Nobel Yay?nevi, ?stanbul. 2002.
  • D. Boyssou, D. Dubois et all, « Concepts et Méthodes pour l'Aide à Décision », Hermès, 2003.
  • J. -L. Marichal, « Fuzzy measures and integrals in the MCDA sorting problematic »,Thèse de doctorat. Univ. Libre de Bruxelles. 202p, 2003.
  • Macharis C, Springael J, De Brucker K, Verbeke A (2004) PROMETHEE and AHP: The design of operational synergies in multicriteria analysis. Strengthening PROMETHEE with ideas of AHP. Eur J Oper Res 153:307–317.
  • Brans J-P, Mareschal B," PROMETHEE methods. In Multiple Criteria Decision Analysis - State of the Art Surveys, Figueira J, Greco S, Ehrgott M (eds). Springer:New York; 163 –195,2005.
  • Bouyssou , "Approches descriptives et constructives d'aide à la décision: Fondements et comparaison", Thèse de doctorat, Université Paris Dauphine, 2006.
  • Chung, S. H. , Lee, A. H. L. , and Pearn, W. L. , "Analytic Network Process (ANP) Approach for Product Mix Planning in Semiconductor Fabricator", International Journal of Production Economics, 96, 15-36. 2006.
  • Elisabeth Rakus-Andersson, Claes Jogreus: "TheChoquet and Sugeno Integrals as Measuresof Total Effectiveness of Medicines. In: Theoretical Advances and Applications of FuzzyLogic and Soft Computing (Proceedings of IFSA 2007, Cancun, Mexico), eds: Oscar Castillo, Patricia Melin, Oscar Montiel Ross, Roberto Sepulveda Cruz, Witold Pedrycz, Janusz Kacprzyk, Springer-Verlag, Advances in Soft Computing 42, pp. 253-262. 2007.
  • Marichal, J. -L. : "An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria" IEEE Trans. Fuzzy Systems, vol. 8, pp. 800–807, Dec. 2000.
  • Sridhar P. , M. Madni A. , and Jamshidi M. , "Multi- criteria decision making in sensor network", IEEE Instrumentation & Measurement Magazine, 11(1), PP-24-29, 2008.
  • Fodor, J. & Roubens, M. (1994). Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer, Dordrecht.
  • Harris R ,1998 ,Introduction to decision making.
  • Lu J, Zhang G, Ruan D, Wu F (2007) Multi- objective group decision making: methods, software and applications with fuzzy set techniques. Imperial College, London.
  • M. SUGENO, Theory of fuzzy integrals and its applications, PhD thesis, Tokyo Institute of Technology, 1974.
  • Siskos, J. , Spyridakos, A. et D. Yannacopoulos, 1993,"MINORA: A Multicriteria Decision Aiding System for Discrete Alternatives", Journal of Information Science and Technology 2, 2, 136-149.