Abstract

The advantage of defect analysis on Quantum dot Cellular Automata (QCA) is that defects can be predict (which are probable to arise during fabrication phase) at analytical phase of QCA design. Since QCA is probabilistic in nature, the probability theory is introduced here to analyze the defect/fault tolerance at gate level of QCA design. We proposed a Bayesian network based Probabilistic Defect Analysis Model (PDAM) to analyze the defect at analytical phase of QCA design. Proposed model is applied over QCA wire, three input Majority voter, Five Input Majority voter and the result is compared with QCADesigner to justify the importance of PDAM approach over exhaustive simulation process with QCADesigner.
Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase

References

- Kunal Das, Debashis De, Mallika De "Tile Based Approach To Design Logic Circuit And It's Defects Analysis For Quantum Dot Cellular Automata ", In Quantum Dots and Quantum Cellular Automata: Recent Trends and Applications, Nova Science Publishers, Inc. , USA. [In press]
Probabilistic Defect Analysis Model for Quantum dot Cellular Automata Design at Analytical Phase

- K. Walus et. al.,' ATIPS laboratory QCADesigner&apos; ATIPS laboratory, University of Calgary, Canada, 2002. homepage- http://www. atips. ca/projects/qcadesigner
- Genie, http://genie. sis. pitt. edu/

Index Terms

Computer Science
Applied Sciences
Keywords

Radius of effects Five Input Majority Voter Bayesian Network PDA Model
Conditional probability