Abstract

The data available on the World Wide Web is assumed to be humongous and infinite. Search Engines have emerged to be integral tools of information retrieval from the web. The current search engines available process queries and produce results based on the location and information occurrence on the web pages providing unsatisfactory results [8]. Web 3.0 and the semantic web incorporated data on the web in machine readable form providing better search results. This paper introduces a semantic search framework named Semantic Search Framework using Semantic Web Services (SSFSWS) built on service oriented architecture (SOA) targeted to enhancing search responses. The framework consists of semantic search providers offering semantic search services. The semantic search services are composed using the depth first search algorithm. The semantic search services offered rely on the RDF data and its corresponding Ontologies built to provide search responses. An OWL2 language namely SROIQ-DL is considered to build the ontologies and represent complex description logic that exists in the RDF data. The framework also introduces effective caching strategies adopted to improve response times. The framework introduced provides ranking schemes based on the ontology relevance scores of the responses observed. A prototype
implementation of the SSFSWS is discussed and its benefits over the existing semantic search engine are clearly discussed in this paper.

References

- Web Ontology Language, http://www.w3.org/2004/OWL/
- OWL 2 Web Ontology Language, http://www.w3.org/TR/owl2-overview/
- Horrocks I, Kutz O, Sattler U. The even more irresistible SROIQ. 2006
- SEWISE: www.georges.gardarin.free.fr/Articles/Sewise_NLDB2003.pdf
- Heflin, J. and Hendler, J. 'Searching the web with SHOE'', Artificial Intelligence for Web Search. Papers from the AAAI Workshop, WS-2000-01, pp. 35–40
- Burton-Jones, A., Storey, V. C., Sugumaran, V. and Purao, S. 'A
heuristic-based methodology for semantic augmentation of user queries on the web;
Conceptual Modeling – ER 2003, 22nd International Conference on Conceptual Modeling,
October 13–16, Proceedings, pp. 476–489
- Amaral, C., Laurent, D., Martins, A., Mendes, A. and Pinto, C "Design and
implementation of a semantic search engine for Portuguese", Proceedings of 4th
247–250
- Christoph Mangold. A survey and classification of semantic search
- F. F. Ramos, H. Unger, V. Larios (Eds.): LNCS 3061, pp. 145–157, Springer-Verlag
Berlin Heidelberg 2004
- Cohen, S. Mamou, J. Kanza, Y. Sagiv, Y "XSEarch: A Semantic Search Engine
for XML", proceedings of the international conference on very large databases, pp 45-56,
2003.
- E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Zhu,
"Avatar semantic search: a database approach to information retrieval", in
Proceedings of SIGMOD, 2006 Chicago, 2006, pp. 790-792
- D. Bhagwat and N. Polyzotsis, "Searching a file system using inferred semantic
links", in Proceedings of HYPERTEXT, 2005 Salzburg, 2005, pp. 85-87
- Yuzhong Qu and Gong Cheng, "Falcons Concept Search: A Practical Search
Engine for Web Ontologies", IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 4, JULY 2011, pp
810-816
- Xiaoou Tang, Ke Liu, Jingyu Cui, Fang Wen, and Xiaogang Wang. "IntentSearch:
Capturing User Intention for One-Click Internet Image Search", IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012, pp
1342-1353
- Xinmei Tian, Yijuan Lu, and Linjun Yang, "Query Difficulty Prediction for Web Image
Search", IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 4, AUGUST 2012, pp951-962
- David Booth and Canyang Kevin Liu. Web Services Description Language (WSDL)
- David Martin, Mark Burstein, Grit Denker, Daniel Elenius, Joseph Giampapa, Drew
McDermott, Deborah McGuinness, Sheila McIlraith, Massimo Paolucci, Bijan Parsia, Terry
/edubase/2009-08-14/edubase-rdf-r2rc3.tgz
Index Terms

Computer Science

Information Sciences

Keywords

Semantic Web Semantic Web Search SOA Ontologies OWL 2 Semantic Web Services Semantic Web Service Composition