Abstract

In Wireless Ad Hoc Networks, the delay performance in data transmission reduces the rate of transmission in Mac layer, which affects the throughput in network. By comparing with existing work and proposed Mac protocol IEEE 802.16, this study carries out a MAC analysis that is of particular focus on networks which is deployed to provide coverage for real-time applications, to improve the Uplink and downlink Ratio in rated transmission. It is shown that introducing sensing for lower densities (i.e., in sparse networks) is not beneficial, while for higher densities (i.e., in dense networks), using an optimized sensing threshold provides significant gain. This simulate in ns2 with different topology to define the Mac issues.

References

- G. Ferrari and O. Tonguz, "MAC protocols and transport capacity in ad hoc
- Andy An-Kai Jeng, and Rong-Hong, "Adaptive Topology Control for Mobile Ad Hoc Networks;" in transcation IEEE 2011.
- B. Maham, R. Narasimhan, and A. Hjorungnes, "Energy-efficient space-time coded cooperative routing in multihop wireless networks;" in Proc. IEEE GLOBECOM&apos;09, pp. 1-7, Nov. 2009

Index Terms

Computer Science Wireless

Keywords

Wireless Ad Hoc Networks topology Distributed Mac Protocols Mac Issues Adaptive configuration Algorithm performance evaluation