Notification: Our email services are now fully restored after a brief, temporary outage caused by a denial-of-service (DoS) attack. If you sent an email on Dec 6 and haven't received a response, please resend your email.
CFP last date
20 December 2024
Reseach Article

g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces

by D. Vidhya, R. Parimelazhagan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 58 - Number 14
Year of Publication: 2012
Authors: D. Vidhya, R. Parimelazhagan
10.5120/9347-3671

D. Vidhya, R. Parimelazhagan . g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces. International Journal of Computer Applications. 58, 14 ( November 2012), 1-7. DOI=10.5120/9347-3671

@article{ 10.5120/9347-3671,
author = { D. Vidhya, R. Parimelazhagan },
title = { g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { November 2012 },
volume = { 58 },
number = { 14 },
month = { November },
year = { 2012 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume58/number14/9347-3671/ },
doi = { 10.5120/9347-3671 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:02:28.284417+05:30
%A D. Vidhya
%A R. Parimelazhagan
%T g*b-Homeomorphisms and Contra-g*b-continuous Maps in Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 58
%N 14
%P 1-7
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we first introduce a new class of closed maps called g*b -closed map and gb-closed map. Also, we introduce a new class of homeomorphisms called g*b -homeomorphism, gb-homeomorphism and we investigate a new generalization of contra-continuity called contra- g*b -continuity.

References
  1. N. Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc. 61(1969), 127-135.
  2. S. G. Crossley and S. K. Hildebrand, semi-topological properties, Fund Math; 74(19720, 233-254.
  3. R. Devi, H. Maki,and K. Balachandran, Associ- ated topologies of generalized ?-closed sets and ?- generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15(1994), 51-63.
  4. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Sci. 19(2) (1996), 303-310.
  5. J. Dontchev and T. Noiri, Contra semi-continuous functions, Math. Pannon, 10(2)(1999), 159-168.
  6. S. Jafari and T. Noiri, Contra-?-continuous functions between topological spaces, Iran. Int. J. Sci. 2(2) (2001), 153-167.
  7. S. Jafari and T. Noiri, On contra-precontinuous func- tions, Bull. Malays. Math. Sci. Soc(2) 25(2) (2002), 115-128.
  8. S. R. Malghan, Generalized closed maps, J. Karnatak. Univ. Sci. , 27(1982), 82-88.
  9. A. S. Mashhour, I. A. Hasanein and S. N. EI-Deeb, On ?-continuous and ?-open mapping, Acta Math. Hungar, 41(1983), 213-218.
  10. A. A. Nasef, Some properties of Contra-?-continuous functions", Chaos Solitons Fractals 24(2005), 471-477.
  11. T. Noiri, On almost continuous functions, Indian J. Pure. Appl. Math. 20(1989), 571-576.
  12. A. A. Omari and M. S. M. Noorani, On Gen- eralized b-closed sets, Bull. Malays. Math. Sci. Soc(2),32(1)(2009), 19-30.
  13. P. Sundaram, Studies on Generalizations of con- tinuous maps in topological spaces, Ph. D. Thesis, Bharathiar University, Coimbatore(1991).
  14. D. Vidhya and R. Parimelazhagan , g*b -closed Sets in topological spaces,Int. J. Contemp. Math. Science 7(2012), 1305-1312.
  15. D. Vidhya and R. Parimelazhagan , g*b Continuous Maps and Pasting Lemma in Topological spaces, Int. J. Math. Analysis, 6(2012), 2307-2315.
Index Terms

Computer Science
Information Sciences

Keywords

g*b-closed map g*b-homeomorphism gb- closed map gb-homeomorphism contra- g*b-continuous