Abstract

This paper intends to study outdoor RF attenuation path loss behavior under certain restrictions. The study has been conducted in Nablus city to develop and optimize a suitable propagation model based on one of the existing propagation models based on outdoor measurements for 900 MHz, where a local GSM system is operating under sever geographical terrains and frequency limitations. The optimized model has been chosen such that certain error parameters are minimized. Some of the proposed models are; Bertoni-Walfish, Hat, Walfisch-Ikegami and the standard macrocell. In this paper a Tuned Bertoni-Walfisch model has outperformed the other models and has proven, to be the best suited for propagation analysis involving such terrain. This is achieved by varying the range dependence using Least Mean Square Error (LMSE) method
References

- Alvaro Valcarce, Jie Zhang, "Empirical Indoor-to-Outdoor Propagation Model for Residential Areas at 0.9–3.5 GHz", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 9, 2010
- Z. Nadir, Member, IAENG, N. Elfadhil, F. Touati. "Pathloss Determination Using Okumura-Hata Model And Spline Interpolation For Missing Data For Oman", Proceedings
Optimizing Outdoor Propagation Model based on Measurements for Multiple RF Cell

Index Terms

Computer Science
Mobile Communication

Keywords

Multipath channel radio channel modeling Path loss model Propagation measurements
Bertoni-Walfisch model

GSM 900