Call for Paper - March 2023 Edition
IJCA solicits original research papers for the March 2023 Edition. Last date of manuscript submission is February 20, 2023. Read More

Homology Modeling of Nitrogenase Iron Protein of Nitrogen Fixing Actinomycete Arthrobacter sp

International Journal of Computer Applications
© 2013 by IJCA Journal
Volume 61 - Number 1
Year of Publication: 2013
Febina Bernice Sharon
Rachel Regi Daniel

Febina Bernice Sharon and Rachel Regi Daniel. Article: Homology Modeling of Nitrogenase Iron Protein of Nitrogen Fixing Actinomycete Arthrobacter sp. International Journal of Computer Applications 61(1):13-19, January 2013. Full text available. BibTeX

	author = {Febina Bernice Sharon and Rachel Regi Daniel},
	title = {Article: Homology Modeling of Nitrogenase Iron Protein of Nitrogen Fixing Actinomycete Arthrobacter sp},
	journal = {International Journal of Computer Applications},
	year = {2013},
	volume = {61},
	number = {1},
	pages = {13-19},
	month = {January},
	note = {Full text available}


Nitrogenase is an important enzyme associated with nitrogen fixation. Nitrogenase iron protein (Nif H) is one of the vital genes contributing to the nitrogen fixation. Arthrobacter sp. is one of the actinomycetes fixing atmospheric nitrogen. Nitrogenase iron protein of Arthrobacter sp. was retrieved from NCBI in FASTA format and a good template was selected by Basic Local Alignment Search tool and it was found to be Azotobacter vinelandii. The modeling of 3D structure of the protein was performed by Swiss model, GENO3D and ModWeb. The modeled 3D structure was evaluated by ProSA, VERIFY3D, PROCHECK, PROVE and ERRAT. The nitrogenase iron protein 3D structure modeled by ModWeb was found to be the best reliable model based on the above mentioned evaluation. The structural dynamics were performed by WEBnm@ and elNemo. 3D structure of the nitrogenase iron protein and visualized by Rasmol.


  • Young, J. P. W. 1992. Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJN (eds) Biological nitrogen fixation. Chapman and Hall, New York, 43-48.
  • Maher, G. , Faten, G. G. , Imen, N. , Nicholas, B. and Louis, S. T. 2011. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Archives of Microbiology. 11:733-736.
  • Zheng, L. , Cash, D. L. , Flint, D. H. and Dean, D. R. 1998. Assembly of ironsulfur clusters. Identification of an iscSUA-hscBAfdx gene cluster from Azotobacter vinelandii. Journal of Biological Chemistry. 273:13264–13272.
  • Rubio, L. M. and Ludden, P. W. 2005. Maturation of nitrogenase: a biochemical puzzle. Journal of Bacteriology. 187:405–414.
  • Hu, Y. , Fay, A. W. , Lee, C. C. and Ribbe, M. W. 2007. P-cluster maturation on nitrogenase MoFe protein. Proceedings of the National Academy of Sciences USA. 104:10424–10429.
  • Rubio, L. M. and Ludden, P. W. 2008. Biosynthesis of the iron molybdenum cofactor of nitrogenase. Annual Reviews of Microbiology. 62:93–111.
  • Merrick, M. J. and Edwards, R. A. 1995. Nitrogen control in bacteria. Microbiological Reviews. 59:604–622.
  • Dixon, R. and Kahn, D. 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology. 2:621–631.
  • Arnab, S. , Saubashya, S. , Louis, S. T. , Asim, K. B. , Subarna, T. and Uttam, K. M. 2010. Homology modelling of the Frankia nitrogenase iron protein. Symbiosis. 50:37-44.
  • Strop, P. , Takahara, P. M. , Chiu, H. J. , Angove, H. C. , Burgess, B. K. and Rees, D. C. 2001. Crystal Structure of the All-Ferrous [4Fe-4S] 0 Form of the Nitrogenase Iron Protein from Azotobacter vinelandii. Biochemistry. 40:651–656.
  • Howard, J. B. and Rees, D. C. 1994. Nitrogenase: a nucleotide-dependent molecular switch. Annual Reviews of Biochemistry. 63:235–264.
  • Howard, J. B. and Rees, D. C. 1996. Structural basis of biological nitrogen fixation. Chemical Reviews. 96:2965–2982.
  • Schlessman, J. L. , Woo, D. , Joshua-Tor, L. , Howard, J. B. and Rees, D. C. 1998. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. Journal of Molecular Biology. 280:669–685.
  • Normand, P. , Lapierre, P. , Tisa, L. S. , Gogarten, J. P. , Alloisio, N. , Bagnarol, E. , Bassi, C. A. , Berry, A. M. , Bickhart, D. M. , Choisne, N. , Couloux, A. , Cournoyer, B. , Crueveiller, S. , Daubin, V. , Demange, N. , Francino, M. P. , Goltsman, E. , Huang, Y. , Kopp, O. R. , Labarre, L. , Lapidus, A. , Lavire, C. , Marechal, J. , Martinez, M. , Mastronunzio, J. E. , Mullin, B. C. , Nienmann, J. , Tania, P. P. , Rouy-Zoe, R. , Schenowitz, C. , Sellstedt, A. , Tavares, F. , Tomkins, J. P. , Vallenet, D. , Valverde, C. , Wall, L. G. , Wang, Y. , Medigue, S. C. and Benson, D. R. 2007. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Research. 7:7–15.
  • Othman, R, Wahab, H. A. , Yosof, R. and Rahman, N. A. 2007. Analysis of secondary structure predictions of dengue virus type 2 NS2B/NS3 against crystal structure to evaluate the predictive power of the in silico methods. In Silico Biology. 7:215–224.
  • Martin-Renom, M. A. , Stuart, A. C. , Fiser, A. , Sanchez, R. , Melo, F. and Sali, A. 2000. Comparative protein structure modeling of genes and genomes. Annual Reviews of Biophysics and Biomolecular Structures. 29:291–325.
  • Centeno, N. B. , Planas-Iglesias, J. and Oliva, B. 2005. Comparative modelling of protein structure and its impact on microbial cell factories. Microbial Cell Factories. 4(20):1-11.
  • Combet, C. , Jambon, M. , Deleage, G. and Geourjon, C. 2002. Geno 3D: automatic comparative molecular modeling of protein. Bioinformatics Applications Note. 1(18): 213-214.
  • Eswar, N. , John, B. , Mirkovic, N. , Fiser, A. , Ilyin, V. A. , Pieper, U. , Stuart, A. C. , Marti-Renom, M. A. , Madhusudhan, M. S. , Yerkovich, B. and Sali, A. 2003. Tools for comparative protein structure modeling and analysis. Nucleic Acids Research. 31: 3375-3380.
  • Sali, A. and Blundell, T. L. 1993. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology. 234:283–291.
  • Wiederstein, M. and Sippl, M. J. 2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research. 35:407–410.
  • Colovos, C. and Yeates, T. O. 1993. Verification of protein structures: patterns of non bonded atomic interactions. Protein Science. 2(9):1511- 1519.
  • Pontius, J. , Richelle, J. and Wodak, S. J. 1996. Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology. 264(1): 121-136.
  • Laskowski, R. A. , MacArthur, M. W. , Moss, D. S. , and Thornton, J. M. 1993. Prochek: A program to check the stereo chemical quality of protein structures. Journal of Applied Crystallography. 26: 283-291.
  • Eisenberg, D. , Luthy, R. and Bowie, J. U. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology. 277:396–404.
  • Ramachandran, G. N. , Ramakrishnan, C. and Sasisekharan, V. 1963. Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology. 7:95–99.
  • Surendhar, R. , Vijayasarathy, K. , Srinivas, E. , Madhavi, S. G. and Narahari, S. G. 2006. Homology modeling of membrane proteins: A critical assessment. Computational Biology and Chemistry. 30:120–126.
  • Yang, L. W. , Rader, A. J. , Liu, X. , Jursa, C. J. , Chen, S. C. , Karimi, H. A. and Bahar, I. 2006. oGNM: online computation of structural dynamics using the Gaussian Network Model. Nucleic Acids Research. 34:24–31.
  • Hollup, S. M. , Salensminde, G. and Reuter, N. 2005. WEBnm@: a web application for normal mode analysis of proteins. BioMed Central Bioinformatics. 6:1–8.
  • Suhre, K. and Sanejouand, Y. H. 2004. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Research. 32:610–614.
  • Wallner, B. & Elofsson, A. 2003. Can correct protein models be identified. Protein Science. 12: 1073-1086.
  • Pascal, B. , Marco, B. and Torsten, S. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27(3): 343–350.
  • Koteswara, R. G. , Kaleswara, R. M. , Nagamalleswara, R. K. and Gyana, R. S. 2010. Comparative modeling of Undecaprenyl pyrophosphate phosphatase in Clostridium botulinum - a potent target of Botulism. International Journal of Systems Biology. 2(2):10-15.
  • Raghunath, S. , Rajesh, K. G. and Rashmiranjan, B. 2010. Computational QSAR analysis of some physiochemical and topological descriptors of Curcumin derivatives by using different statistical methods. Journal of Chemical and Pharmaceutical Research. 2(6):344-350.
  • Archna, S. and Madhvi, S. 2010. In silico Analysis and Homology Modelling of Antioxidant Proteins of Spinach. Journal of Proteomics and Bioinformatics. 3: 148-154.