CFP last date
21 October 2024
Reseach Article

Entropic Approach and Evolution Strategies for Optimizing the Image Segmentation by Pixel Classification: Application to Quality Control

by M. Merzougui, M. Nasri, B. Bouali
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 61 - Number 13
Year of Publication: 2013
Authors: M. Merzougui, M. Nasri, B. Bouali
10.5120/9989-4834

M. Merzougui, M. Nasri, B. Bouali . Entropic Approach and Evolution Strategies for Optimizing the Image Segmentation by Pixel Classification: Application to Quality Control. International Journal of Computer Applications. 61, 13 ( January 2013), 22-28. DOI=10.5120/9989-4834

@article{ 10.5120/9989-4834,
author = { M. Merzougui, M. Nasri, B. Bouali },
title = { Entropic Approach and Evolution Strategies for Optimizing the Image Segmentation by Pixel Classification: Application to Quality Control },
journal = { International Journal of Computer Applications },
issue_date = { January 2013 },
volume = { 61 },
number = { 13 },
month = { January },
year = { 2013 },
issn = { 0975-8887 },
pages = { 22-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume61/number13/9989-4834/ },
doi = { 10.5120/9989-4834 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:09:01.854932+05:30
%A M. Merzougui
%A M. Nasri
%A B. Bouali
%T Entropic Approach and Evolution Strategies for Optimizing the Image Segmentation by Pixel Classification: Application to Quality Control
%J International Journal of Computer Applications
%@ 0975-8887
%V 61
%N 13
%P 22-28
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a segmentation method based on pixel classification and evolution strategies is proposed. Before segmentation, the number of classes is determined by the principle of maximum entropy. The proposed approach is validated on some synthetic and real images and, it shows to be very interesting as decision support in quality control.

References
  1. Cocquerez T. P. et Phillip S. "Analyse d'images : Filtrage et segmentation". Editions MASSON, Paris, 1995.
  2. N. Vandenbroucke, L. Macaire, J. G. Postaire, Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis. , Computer Vision and Image Understanding 90 (2), 190-216, 2003.
  3. Christophe Saint-Jean, Classification paramétrique robuste partiellement supervisée en reconnaissance des formes, Thèse de Doctorat, université de La Rochelle - UFR Sciences Laboratoire d'Informatique et d'Imagerie Industrielle 2001.
  4. L. Macaire, N. Vandenbroucke, J. G Postaire Segmentation d'images par classification spatio-colorimétrique des pixels. Traitement du signal vol 21 N spécial L'image numérique couleur 423-437, 2004.
  5. Nasri M. Contribution à la classification de données par Approches Evolutionnistes : Simulation et Application aux images de textures''. Thèse de doctorat. Université Mohammed premier Oujda 2004.
  6. Nasri M, M. EL Hitmy, H. Ouariachi and M. Barboucha. Optimization of a fuzzy classification by evolutionary strategies. In proceedings of SPIE Conf. , 6 th international conference on quality control by artificial vision, vol. 5132, pp. 220230, USA,. Repulished as an SME Technical Paper by The society of manufacturing, 2003.
  7. Hall, L. Q. , Özyurt, I. B. et Bezdek, J. C. " Clustering with a genetically optimized approach ". IEEE Trans. on Evolutionary Computation, Vol. 3, N°2, pp. 103-110, july 1999.
  8. H. Ouariachi, Classification non –Supervisée de données par les réseaux de neurones et par une approche évolutionniste : application à la segmentation d'images. Thèse de doctorat. Université Mohammed premier Oujda 2001.
  9. Presberger, T. , Koch, M. "Comparison of evolutionary strategies and genetic algorithms for optimization of a fuzzy controller". Proc. of EUFIT'95, Aachen, Germany, august 1995.
  10. Bezdek, J. C. "Cluster validity with fuzzy sets". J. Cybernetics, Vol. 3, N°3, pp. 58-73, 1974.
  11. Karayiannis, N. B. , Bezdek, J. C. et Hathaway, R. J. "Repairs to GLVQ : a new family of competitive learning schemes". IEEE Trans. on Neural Networks, Vol. 7, N°5, pp. 1062-1071, 1996.
  12. A. EL Allaoui, M. Merzougui, M. Nasri, M. EL Hitmy and H. Ouariachi. Optimization of Unsupervised Classification by Evolutionary Strategies. IJCSNS International Journal of Computer Science and Network Security, ISSN: 1738-7906, Vol. 10 No. 6 pp. 325-332 June, 2010.
  13. M. Merzougui, A. EL Allaoui, M. Nasri, M. EL Hitmy and H. Ouariachi. Unsupervised classification using evolutionary strategies approach and the Xie and Beni criterion. IJAST International Journal of Advanced Science and Technology, ISSN: 2005-4238, Vol. 19, pp 43-58 June, 2010.
  14. Ammor. O, Raiss. N et Slaoui. K "Détermination du nombre optimal de classes présentant un fort degré de chevauchement " Revue Modulad N° 37, pp 31-42, 2007.
  15. G. Palubinskas, X. Descombes et F. Kruggel. " An unsupervised clustering method using the entropy minimization. " In ICPR, pp. 1816-1818, Australia Août 1998.
  16. Kim, D. J, Park, Y. W. and Park, D. J. "A novel validity index for determination of the optimal number of clusters", IEICE Trans. Inform. Syst. D-E84. 2, 281 –285,2001
Index Terms

Computer Science
Information Sciences

Keywords

Segmentation segmentation by pixel classification evolutionary strategies evolutionary segmentation principle of maximum entropy