CFP last date
22 April 2024
Reseach Article

A Survey on FM-UWB Transceivers

by Mohamed Ali, Heba Shawkey, Abdelhalim Zekry
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 61 - Number 6
Year of Publication: 2013
Authors: Mohamed Ali, Heba Shawkey, Abdelhalim Zekry
10.5120/9929-4560

Mohamed Ali, Heba Shawkey, Abdelhalim Zekry . A Survey on FM-UWB Transceivers. International Journal of Computer Applications. 61, 6 ( January 2013), 1-5. DOI=10.5120/9929-4560

@article{ 10.5120/9929-4560,
author = { Mohamed Ali, Heba Shawkey, Abdelhalim Zekry },
title = { A Survey on FM-UWB Transceivers },
journal = { International Journal of Computer Applications },
issue_date = { January 2013 },
volume = { 61 },
number = { 6 },
month = { January },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume61/number6/9929-4560/ },
doi = { 10.5120/9929-4560 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:08:19.757578+05:30
%A Mohamed Ali
%A Heba Shawkey
%A Abdelhalim Zekry
%T A Survey on FM-UWB Transceivers
%J International Journal of Computer Applications
%@ 0975-8887
%V 61
%N 6
%P 1-5
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper surveys the research on frequency modulated ultra-wideband (FM-UWB) transceivers. FM-UWB system uses low modulation index digital FSK followed by high modulation index analog FM to generate a constant envelope UWB signal with a flat power spectral density and steep spectral roll-off. FM-UWB can be seen as an analog implementation of a spread spectrum system with spreading gain equal to the modulation index. FM-UWB system is suitable for low data rate and short-range applications. The advantages of FM-UWB system such as low power consumption, very low radiated power (?41. 3 dBm/MHz), good coexistence with other existing wireless technologies, and robustness to interference and multipath making it suitable for Wireless Body Area Network (WBAN) in medical applications.

References
  1. Federal Communications Commission, "FCC notice of proposed rule making, revision of part 15 of the commission's rules regarding ultra-wideband transmission system", FCC, Washington DC, ET-docket 98-153.
  2. M. Z. Win and R. A. Scholtz, "Impulse radio: How it works?", IEEE Commun. Lett. vol. 2, pp. 36-38, Feb. 1998.
  3. J. F. M. Gerrits, M. H. L. Kouwenhouven, P. R. van der Meer, J. R. Farserotu, and J. R. Long, "Principles and limitations of ultra-wideband FM communications systems", EURASIP J. of App. Signal Proc. , vol. 2005:3, pp. 382-396.
  4. J. F. M. Gerrits, J. R. Farserotu and J. R. Long, "Low-Complexity Ultra Wideband Communications", IEEE Transactions on Circuits and Systems-II, vol. 55, pp. 329 - 333, Apr. 2008.
  5. M. Hernandez and R. Kohno, "UWB Systems for Body Area Networks in IEEE 802. 15. 6", IEEE International Conference on Ultra-Wideband (ICUWB), 2011.
  6. B. Gupta, D. Valente, E. Cinaca, and R. Prasad, "FM-UWB for radar and communications in medical applications", First International Symposium on Applied Sciences on Biomedical and Communication Technologies, 2008. ISABEL '08. , 16 December, 2008.
  7. E. Cinaca and B. Gupta, "FM-UWB for Communications and Radar in Medical Applications", Wireless Personal Communication Journal, July 2009.
  8. W. Rhee, N. Xu, B. Zhou, and Z. Wang, "Low Power, Non Invasive UWB Systems for WBAN and Biomedical Applications", International Conference on Information and Communication Technology Convergence (ICTC), 2010, pp. 35-40.
  9. B. Gupta, E. Cianca, M. Ruggieri, and R. Prasad, "End to End Vital Sign Monitoring System with FM-UWB Technology", International Conference on Devices and Communications, 2011.
  10. H. Taub, D. Schilling, Principles of Communication Systems, McGraw-Hill, New York, NY, USA, 1971.
  11. P. Nilsson, J. Gerrits, and J. Yuan, "A low complexity DDS IC for FMUWB applications", 16th IST Mobile and Wireless Communications Summit, Budapest, Hungary, Jul. 2007.
  12. B. Zhou, W. Rhee, and Z. Wang, "Reconfigurable FM-UWB transmitter", Electronics Letters, Vol. 47, No. 10, 12th May 2011.
  13. B. Zhou, R. He, J. Qiao, J. Liu, W. Rhee, and Z. Wang, "A Low Data Rate FM-UWB Transmitter with ?-? Based Sub-Carrier Modulation and Quasi- Continuous Frequency-Locked Loop", IEEE Asian Solid-State Circuits Conference, Nov. 2010.
  14. B. Zhou, H. Lv, M. Wang, J. Liu, W. Rhee, Y. Li, D. Kim, and Z. Wang, "A 1Mb/s 3. 2-4. 4GHz Reconfigurable FM-UWB Transmitter in 0. 18?m CMOS", IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011.
  15. B. Zhou, J. Qiao, R. He, J. Liu, W. Zhang, H. Lv, W. Rhee, Y. Li, and Z. Wang, "A Gated FM-UWB System With Data-Driven Front-End Power Control", IEEE Trans. Circuits and Systems I, Regular Papers, Vol. 59, No. 6, June 2012.
  16. N. Saputra, J. R. Long, and J. J. Pekarik, "A 900µW, 3–5 GHz integrated FM-UWB transmitter in 90 nm CMOS", IEEE ESSCIRC, Sep. 2010, pp. 398–401.
  17. N. Saputra and J. R. Long, "A fully-integrated, short-range, low data rate FM-UWB transmitter in 90 nm CMOS", IEEE J. Solid-State Circuits, vol. 46, pp. 1627–1635, Jul. 2011.
  18. T. Tong, Z. Wenhua, J. Mikkelsen, and T. Larsen, "A 0. 18µm CMOS low power ring VCO with 1 GHz tuning range for 3–5 GHz FM-UWB applications", 10th IEEE Int. Conf. Commun. Syst. , 2006, pp. 1–5.
  19. N. Rashidi, A. Nabavi, and M. Mehrabian, "7GHz Voltage Control Ring Oscillator for UWB Applications", International Conference on Microelectronics (ICM), 2008.
  20. J. Duan, Z. He, C. Kang, J. Wang, and J. Zhang, "A Multiloop Ring VCO Design in 0. 18µm CMOS Technology", 10th IEEE International Conference on Solid-State and Integrated Circuit Technology(ICSICT), 2010, pp. 99 – 101.
  21. A. Abidi, "Phase noise and Jitter in CMOS ring Oscillators", IEEE Journal of Solid State Circuits, August 2008.
  22. M. Danesh and J. R. Long, "Ultra-low Power Transmitters for UWB-FM Sensor Networks", 19th annual work shop on circuits, systems and signal processing (ProRisc) Nov. 2008, pp. 166-170.
  23. B. Soltanian, H. Ainspan, W. Rhee, D. Friedman, and P. R. Kinget, "An ultra-compact differentially tuned 6-GHz CMOS LC-VCO with dynamic common-mode feedback", IEEE J. Solid-State Circuit, 2007, 42, (8), pp. 1635–1641.
  24. S. S. Broussev, T. A. Lehtonen, and N. T. Tchamov, "A Wideband Low Phase-Noise LC-VCO With Programmable KVCO", IEEE Microwave and Wireless components Letters, vol. 17, No. 4, April 2007.
  25. M. Demirkan, S. P. Bruss, and R. R. Spencer, "Design of Wide Tuning- Range CMOS VCOs Using Switched Coupled-Inductors", IEEE J. Solid-State Circuits, vol. 43, No. 5, May 2008.
  26. M. Tsuru, et al. , "A Triple-Tuned Ultra-Wideband VCO", IEEE Transactions on MTT, vol. 56, No. 2, February 2008.
  27. A. EI Oualkadi, "5-GHz Low Phase Noise CMOS LC-VCO with PGS Inductor Suitable for Ultra-Low Power Applications", Mediterrannean Microwave Symposium (MMS), 2009.
  28. J. Hou and Y. Wang, "A 5 GHz differential Colpitts CMOS VCO using the bottom PMOS cross-coupled current source", IEEE Microw. Wirel. Compon. Lett. , 2009, 19, (6), pp. 4101–403.
  29. C. Wu and G. Jian, "A CMOS LC VCO with novel negative impedance design for wide-band operation", IEEE Radio Frequency Integrated Circuits Symp. , (RFIC), Anaheim, CA, USA, 2010, pp. 537–540.
  30. X. Qi and Z. Li, "A Low Power Consumption, Low Phase Noise, and Wide Tuning Range LC VCO with ACC", IEEE 13th International Conference on Communication Technology, (ICCT), 2011.
  31. C. H. Chun, H. S. Choi, Q. D. Bui, S. Y. Kang, J. Y. Jang, U. B. Lee, I. Y. Oh, and C. S. Park, "Compact wideband LC VCO with active inductor harmonic filtering technique", Electronics Letters, Vol. 47 , Issue 3, 2011.
  32. M. Detratti, E. Perez, J. F. M. Gerrits, and M. Lobeira, "A 4. 6 mW 6. 25–8. 25 GHz RF transmitter IC for FM-UWB applications", ICUWB, 2009, pp. 180–184.
  33. J. F. M. Gerrits, M. Danesh, Y. Zhao, Y. Dong, G. van Veenendaal, J. R. Long, and J. R. Farserotu, "System and Circuit Considerations for Low-Complexity Constant-Envelope FM-UWB", IEEE International Symposium on Circuits and Systems (ISCAS), 2010, pp. 3300–3303.
  34. J. F. M. Gerrits et al. , "A 7. 2 GHz -7. 7 GHz FM-UWB transceiver prototype", IEEE ICUWB, Sep. 2009, pp. 580–585.
  35. C. P. Chang and H. R. Chuang, "0. 18 µm 3–6 GHz CMOS broadband LNA for UWB radio", electronics letters, 9th June 2005, Vol. 41 No. 12.
  36. T. Taris, JB. Begueret, and Y. Deval, "A Low Voltage Current Reuse LNA in a 130nm CMOS Technology for UWB Applications", 37th European Microwave Conference, 2007.
  37. D. Hun Shin, J. Park, and C. Patrick Yue, "A Low-Power, 3–5-GHz CMOS UWB LNA Using Transformer Matching Techniquev", IEEE Asian Solid-State Circuits Conference, 2007.
  38. M. Battista, J. Gaubert, M. Egels, S. Bourdel, and H. Barthélémy, "High-Voltage-Gain CMOS LNA For 6–8. 5-GHz UWB Receivers", IEEE trans. on circuits and systems—II: express briefs, Vol. 55, No. 8, august 2008.
  39. A. Mirvakili, and M. Yavari, "A linear wideband CMOS LNA for 3-5 GHZ UWB Systems", International SoC Design Conference, ISOCC'08, 2008.
  40. Y. Zhao, G. van Veenendaal, H. Bonakdar, J. F. M. Gerrits, and J. R. Long, "3. 6mW, 30dB Gain Preamplifiers for an FM-UWB Receiver", IEEE Bipolar/BiCMOS Circuits and Technology Meeting, BCTM 2008, pp. 216–219.
  41. W. Wu, M. Nagaraju, C. T. Charles, and X. Fan, "A 3. 1-5GHz High and Flat Gain UWB LNA", 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009, pp. 1138–1141.
  42. A. S. Nilsaz, M. K. Parashkoh, H. g. zadeh, Zhuo, Zou, M. B. Nejad, and L. Rong Zheng, "Low Power 0. 18?m CMOS Ultra Wideband Inductor-less LNA Design for UWB Receiver", IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2010, pp. 855–858.
  43. E. Abiri, M. R. Salehi, and H. Rezaei, "Design of UWB LNA with Interference Rejection using Coupled Inductors", IEEE Symposium on Industrial Electronics and Applications (ISIEA), Sep. 2011.
  44. J. F. M. Gerrits, J. R. Farserotu, and J. R. Long, "A wideband FM demodulator for a low-complexity FM-UWB receiver", 9th Eur. Wireless Technol. Conf. , Sep. 2006, pp. 99–102.
  45. Y. Dong, Y. Zhao, J. F. M. Gerrits, G. van Veenendaal, and J. R. Long, "A 9mW High Band FM-UWB Receiver Frontend", Proceeding of ESSCIRC, pp. 302-305, Sep. 2008.
  46. Y. Zhao, Y. Dong, J. Gerrits, G. V. Veenendaal, J. Long, and J. Farserotu, "A short range, low data rate, 7. 2 GHz-7. 7 GHz FM-UWB receiver front-end", IEEE J. Solid-State Circuits, vol. 44, pp. 1872–1882, Jul. 2009.
  47. T. Tong, C. A. Lin, O. K. Jensen, J. H. Mikkelsen, and T. Larsen, "A 0. 25µm CMOS Low Power RF Multiplier for Ultra-wide Band System Applications", IEEE Conference on Electron Devices and Solid-State Circuits, 2005, pp. 221 – 224.
  48. T. Tong, J. H. Mikkelsen, T. Larsen, "A 0. 18 ?m CMOS Implementation of a Low Power, Fully Differential RF Front-End for FM-UWB Based P-PAN Receivers", 10th IEEE Singapore International Conference on Communication systems, ICCS, 2006.
  49. T. Tong, J. H. Mikkelsen, T. Larsen, "0. 18 ?m CMOS RF Front-End Chipset for FM-UWB Based P-PAN Receivers", Norchip, 2007.
  50. N. Saputra, J. R. Long, and J. J. Pekarik, "A 2. 2 mW Regenerative FM-UWB Receiver in 65 nm CMOS", IEEE Radio Frequency Integrated Circuits Symposium, 2010.
  51. N. Saputra and J. R. Long, "A short-range low data-rate regenerative FM-UWB receiver", IEEE Trans. Microw. Theory Tech. , vol. 59, pp. 1131–1140, Apr. 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Ultra-wideband (UWB) FM-UWB Wireless Body Area Network (WBAN)