Abstract

Continuous Stirred Tank Reactor (CSTR) plays an important role in the process industries. It helps for maintaining the temperature of the liquid in the reactors. This paper deals with the comparison of adaptive control and conventional PID control in CSTR process. In the adaptive control, Model Reference Adaptive Control (MRAC) and Self-Tuning Regulator (STR) methods are used. The Recursive Least-Square algorithm (RLS) gives the process parameters and Minimum Degree Pole Placement (MDPP) gives the controller parameters and is used to obtain the Control law. This paper illustrates how well the MDDP and RLS algorithms work. The S-function simulation is made using MATLAB codes and the results were analysed. Simulation results shows that the closed loop response of adaptive control has a better performance, compared with the conventional PID controller. This adaptive control method is applied to the Continuous Stirred Tank Reactor for maintaining the liquid temperature inside the reactor.

References

- Missula Jagath Vallabhai, Pankaj Swarnkar, D. M. Deshpande, "Comparative Analysis of PI Control and Model Reference Adaptive Control Based Vector Control Strategy for
Optimization of a Temperature Control Loop using Self Tuning Regulator

Index Terms

Computer Science

Control Systems
Keywords
Continuous Stirred Tank Reactor Model reference adaptive control Minimum Degree Pole Placement
PID controller
Recursive Least-Square algorithm
Self-Tuning Regulator