CFP last date
20 May 2024
Reseach Article

Control of Yeast Fermentation Bioreactor in Subspace

by Seshu Kumar Damarla, Madhusree Kundu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 64 - Number 5
Year of Publication: 2013
Authors: Seshu Kumar Damarla, Madhusree Kundu
10.5120/10629-5357

Seshu Kumar Damarla, Madhusree Kundu . Control of Yeast Fermentation Bioreactor in Subspace. International Journal of Computer Applications. 64, 5 ( February 2013), 13-20. DOI=10.5120/10629-5357

@article{ 10.5120/10629-5357,
author = { Seshu Kumar Damarla, Madhusree Kundu },
title = { Control of Yeast Fermentation Bioreactor in Subspace },
journal = { International Journal of Computer Applications },
issue_date = { February 2013 },
volume = { 64 },
number = { 5 },
month = { February },
year = { 2013 },
issn = { 0975-8887 },
pages = { 13-20 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume64/number5/10629-5357/ },
doi = { 10.5120/10629-5357 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:15:35.243748+05:30
%A Seshu Kumar Damarla
%A Madhusree Kundu
%T Control of Yeast Fermentation Bioreactor in Subspace
%J International Journal of Computer Applications
%@ 0975-8887
%V 64
%N 5
%P 13-20
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

PCA based temperature controller was used to control Ethanol concentration produced in Yeast fermentation process. The controller was designed at a specific operating point and its disturbance rejection performances were studied. Substrate inlet temperature proved to be the most significant disturbance input from the analysis of open loop responses. Q-statistic (SPE) of process measurements confirmed that in the face of disturbances and noise the process could be held to the specific operating condition using the controller designed in subspace.

References
  1. G. P. Reddy, M. Chidambaram, "Nonlinear control of bioreactors with input multiplicities", Bioprocess Eng. , Vol. 11, (1994), pp: 97-100.
  2. S. N. Jyothi, M. Chidambaram, "Nonlinear feedforward control of bioreactors with input multiplicities", Bioproc. Biosyst. Eng. , Vol. 24, (2001), pp: 123-129
  3. T. K. Radhakrishnan, S. Sundaram, M. Chidambaram, "Non-linear control of continuous bioreactors", Bioprocess Eng. , Vol. 20, (1999), pp: 173-178
  4. M. Galluzzo, B. Cosenza, A. Matharu, "Control of a nonlinear continuous bioreactor with bifurcation by a type-2 fuzzy logic controller", Comput. Chem. Eng. , Vol. 32 (12), (2008), pp: 2986-2993
  5. D. Constantino, D. Pierre, F. Claude, L. Philippe, S. Marc, "Adaptive predictive control of dissolved oxygen concentration in a laboratory-scale bioreactor", J Biotechnol. , Vol. 43, (1995), pp: 21-32
  6. H. J. Tham, K. B. Ramachandran, M. A. Hussain, "Sliding Mode Control for a Continuous Bioreactor", Chem. Biochem. Eng. , Q. , Vol. 17 (4), (2003), pp: 267–275
  7. S. Ramaswamy, T. J. Cutright, H. K. Qammar, "Control of a continuous bioreactor using model predictive control", Process Biochem. , Vol. 40, (2005), pp: 2763–2770
  8. G-Y. Zhu, A. Zamamiri, M. A. Henson, M. A. Hjortso, "Model predictive control of continuous yeast bioreactors using cell population balance models", Chem. Eng. Sci. , Vol. 55, (2000), pp: 6155-6167
  9. K. N. Zoltan, "Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks", Chem. Eng. J. , Vol. 127, (2007), pp: 95–109
  10. J. E. Jackson, "A User's Guide to Principal Components", Wiley, New York, (2003).
  11. R. Takros, M. Gerigk, H. Paschold, C. Wandrey, "Principal Component Analysis for Microbial L-Phenylalanine Production", Bioproc. Biosyst. Eng. , Vol. 24, (2001), pp: 93-99.
  12. J. M. Escano, F. Dorado, "PCA based Pressure control of a Gas Mixing Chamber", IEEE Conference on Emerging Technologies & Factory Automation, Mallorca, Spain, (2009).
  13. J. E. Jackso, G. Mudholkar, "Control procedures for residuals associated with principal component analysis", Technometrics, Vol. 21, (1979), pp: 341-349.
  14. J. Kresta, J. F. MacGregor, T. E. Marlin, "Multivariate statistical monitoring of process operating performance", Can. J. Chem. , Vol. 69 (1), (1991), pp: 35-47
  15. P. Nomikos, J. F. MacGregor, "Monitoring Batch Processes using Multiway Principal Component Analysis", AIChE J. , Vol. 40(8), (1994), pp: 1361–1375
  16. M. J. Piovoso, K. A. Kosanovich, P. K. Pearson, "Monitoring process performance in real-time", In Proc. of 1991 ACC Boston, Massachusetts, (1991), pp: 721-724.
  17. M. J. Piovoso, K. A. Kosanovich, "Applications of Multivariate Statistical Methods to Process Monitoring and Controller Design", Int. J. Control, Vol. 59 (3), (1994), pp: 743-765.
  18. G. Chen, T. J. McAvoyy, M. J. Piovoso, "A multivariate statistical controller for on-line quality improvement", J. Proc. Cont. , Vol. 8 (2), pp: 139-149
  19. X. Liu, X. Chen, W. Wu, Y. Zhang, "Process control based on principal component analysis for maize drying", Food Control, Vol. 17, (2006), pp: 894–899
  20. L. B. Palma, F. V. Coito, P. S. Gil, R. Neves-Silva, "Process Control based on PCA Models", 15th IEEE Int. Conf. on Emerging Technologies and Factory Automation, Univ. of the Basque Country, Bilbao, Spain, (2010).
  21. L. B. Palma, F. V. Coito, P. S. Gil, R. Neves-Silva, "Design of Adaptive PCA Controllers for SISO Systems", 18th IFAC World Congress Milano, Italy, (2011)
  22. S. L. Shah, R. Miller, H. Takada, K. Morinaga, T. Satou, "Modelling and control of a tubular reactor: A PCA based approach", Fifth IFAC symposium on dynamics and control of process systems, Corfu, Greece, (1998), pp: 17–22.
  23. K. Akamatsu, S. Lakshminarayanan, H. Manako, H. Takada, T. Satou, S. Shah, "Data-based control of an industrial tubular reactor", Control Eng. Pract. , Vol. 8, (2000), pp: 783-790.
  24. S. A. Paul, K. N. Zoltan, V. C. Mircea, I. L. Arpad, "Model Based Control: Case Studies in Process Engineering", Wiley-VCH, Weinheim, (2006).
Index Terms

Computer Science
Information Sciences

Keywords

Principal Component Analysis bioreactor subspace