CFP last date
20 May 2024
Reseach Article

Digitally Programmable Floating Impedance Converter using CMOS-DVCC

by Ahmed M. Nahhas
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 66 - Number 17
Year of Publication: 2013
Authors: Ahmed M. Nahhas
10.5120/11174-6113

Ahmed M. Nahhas . Digitally Programmable Floating Impedance Converter using CMOS-DVCC. International Journal of Computer Applications. 66, 17 ( March 2013), 9-13. DOI=10.5120/11174-6113

@article{ 10.5120/11174-6113,
author = { Ahmed M. Nahhas },
title = { Digitally Programmable Floating Impedance Converter using CMOS-DVCC },
journal = { International Journal of Computer Applications },
issue_date = { March 2013 },
volume = { 66 },
number = { 17 },
month = { March },
year = { 2013 },
issn = { 0975-8887 },
pages = { 9-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume66/number17/11174-6113/ },
doi = { 10.5120/11174-6113 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:22:38.914872+05:30
%A Ahmed M. Nahhas
%T Digitally Programmable Floating Impedance Converter using CMOS-DVCC
%J International Journal of Computer Applications
%@ 0975-8887
%V 66
%N 17
%P 9-13
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A novel digitally programmable floating impedance converter circuit is realized using two CMOS digitally programmable differential voltage current conveyors and three grounded passive elements. The realized impedance converter can provide digitally programmable floating impedances like ideal floating resistor, capacitor, inductor and frequency dependent negative resistor through appropriate selection of three grounded passive elements without any component matching constraint. The realized digitally programmable floating impedance converter is designed and verified using PSPICE and the results thus obtained justify the theory.

References
  1. Wilson, B. 1990, Recent developments in current conveyors and current-mode circuits, IEE Proceedings G, Vol. 137, 2, 63–77.
  2. Elwan, H. Q. and Soliman, A. M. 1997, Novel CMOS differential voltage current conveyor and its applications, IEE Proc. Circuits Devices Systems, Vol. 144, 3, 195-200.
  3. Toumazou, C. , Lidgey, F. J. and Haigh, D. G. 1998, Analogue IC Design: The Current-Mode Approach, IEE, York, UK.
  4. Khan, I. A. and Maheshwari, S. 2000, Simple first order all-pass section using a single CCII, International Journal of Electronics, Vol. 87, 3, 303-306.
  5. Khan, I. A. and Zaidi, M. H. 2000, Multifunctional translinear-C current-mode filter, International Journal of Electronics, Vol. 87, 9, 1047–1051.
  6. Mita, R. , Palumbo, G. and Pennisi, S. 2003, 1. 5-V CMOS CCII+ with high current-drive capability, IEEE Trans. CAS-II, Vol. 50, 4, 187-190.
  7. Kumar, V. , Keskin, A. U. , Pal K. 2005, DVCC based single element controlled oscillators using all grounded components and simultaneous current voltage mode outputs, Frequenz, Vol. 59, 7–8.
  8. Khan, I. A. , Beg, P. and Ahmed, M. T. 2007, First order current mode filters and multiphase sinusoidal oscillators using MOCCIIs, Arabian, Journal of Science and Engineering, Saudi Arabia, Vol. 32, 2C, 119-126.
  9. Tsukutani, T. Sumi, Y. and Yabuki, N. 2007, Novel current mode biquadratic circuit using only plus type DO-DVCCs and grounded passive components, International Journal of Electronics, vol. 94, 12, 1137–1146.
  10. Sumi, Y. Tsukutani, T. and Yabuki, N. 2008, Novel current-mode biquadratic circuit using only plus type DO-DVCCCs, Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS-08), vol. 8–11, 1–4.
  11. Khan, I. A. and Beg, P. 2009, Fully differential sinusoidal quadrature oscillator using CMOS DVCC, Proc. International Conference on Communication, Computers and Power –ICCCP2009, Muscat, Oman, SQU-2009 ISSN: 1813-419X-101. 1-101. 3.
  12. Ansari, M. S. and Khan, I. A. 2010, Multiphase differential sinusoidal oscillator based on DVCC, Int. J. of Recent Trends in Engineering and Technology, Vol. 4, 3, 96-99.
  13. Chaturvedi, B. and Maheshwari, S. 2011, Current mode biquad filter with minimum component count, Active and Passive Electronic Components, Vol. 2011, 1-7,
  14. Beg, P. , Khan, I. A. and Maheshwari, S. 2012, Biphase amplifier based precision rectifiers using current conveyors, International J. Computer Applications, Vol. 42, 3, 14-18.
  15. Mahmoud, S. A. , Hashiesh, M. A. and Soliman, A. M. 2005, Low-voltage digitally controlled fully differential current conveyor, IEEE Transactions on Circuits and Systems-I, 52, No. 10, 2055-2064.
  16. Khan, I. A. , Khan, M. R. and Afzal, N. 2006, Digitally programmable multifunctional filters using CCIIs, Journal of Active and Passive Electronic Devices, Vol. 1, 213-220.
  17. Hassan, T. M. and Mahmoud, S. A. 2007, Low voltage digitally programmable band pass filter with independent control, IEEE International Conference on Signal Processing and Communications (ICSPC-2007), 24-27, Dubai, UAE.
  18. Mahmoud, S. A. 2008, Low voltage wide range CMOS differential voltage current conveyor and its applications, Contemporary Engineering Sciences, Vol. 1, 3, 105-126.
  19. Khan, I. A. , Khan, M. R. and Afzal, N. 2009, A Digitally Programmable Impedance Multiplier using CCIIs with High Resolution Capability, Journal of Active and Passive Electronic Devices, Vol. 8, 247-257.
  20. Hassan, T. M. and Mahmoud, S. A. 2009, Fully programmable universal filter with independent gain, ?0 and Q control based on new digitally programmable CMOS CCII, Journal of Circuits, Systems and Computers, Vol. 18, 5, 875-897.
  21. Khan, I. A. and Simsim, M. T. 2011, A Novel Impedance Multiplier using Low voltage Digitally Controlled CCII, Proc. IEEE GCC Conference and Exhibition, Dubai, UAE, 331-334.
  22. Khan, I. A. and Nahhas, A. M. 2012, Reconfigurable voltage mode first order multifunctional filter using single low voltage digitally controlled CMOS CCII, International J. Computer Applications, Vol. 45, 5, 37-40.
  23. Khan, I. A. and Nahhas, A. M. 2012, Current mode programmable analog modules using low voltage digitally controlled CMOS CCII, International J. Computer Applications, Vol. 48, 4, 38-44.
  24. Khan, I. A. and Nahhas, A. M. 2012, Reconfigurable voltage mode phase shifter using low voltage digitally controlled CMOS CCII, Electrical and Electronic Engineering, Vol. 2, 4, 226-229.
  25. Nahhas, A. M. 2012, Reconfigurable current mode programmable multifunctional filter, International J. on Recent Trends in Engineering and Technology, Vol. 7, 2, 88-91.
  26. Khan, M. Z. and Ansari, M. A. 2012, Digitally programmable voltage mode universal biquadratic filter, International J. Computer Applications, Vol. 54, 16, 26-31.
  27. Khan, I. A. and Zaidi, M. H. 2003, A novel ideal floating inductor using translinear conveyors, Active and Passive Elect. Comp. , Vol. 26, 2, 87-89.
  28. Khan, I. A. and Zaidi, M. H. 2003, A novel generalized impedance converter using single second generation current conveyor, Active and Passive Elect. Comp. , Vol. 26, 2, 91-94.
  29. Soliman, A. M. 2010, On the realization of floating inductors, Nature and Science, Vol. 8, 5, 167-180.
  30. Soliman, A. M. and Saad, R. A. 2010, New families of floating FDNR circuits, Journal of Electrical and Computer Engineering, 1-7, doi:10. 1155/2010/563761.
  31. Kacar, F. and Kuntman, H. 2011, CFOA-based lossless and lossy inductance simulators, Radio Engineering, Vol. 20, 3, 627–631.
  32. Abuelma'atti, M. T. 2012, New grounded immittance function simulators using single current feedback operational amplifier, Analog Integrated Circuits and Signal Processing, Vol. 71, 1, 95–100.
  33. Ibrahim, M. A. , Minaei, S. , Yuce, E. , Norbert, H. and Jaroslav, K. 2012, Lossy/lossless floating grounded inductance simulation using DDCC, Radio Engineering, Vol. 21, 1, 3-10.
  34. Senani, R. And Bhasker, D. R. 2012, New lossy/loss-less synthetic floating inductance configuration realized with only two CFOAs, Analog Integrated Circuits and Signal Processing, Vol 73, 981–987.
  35. Floyd, T. L. 2012, Electronic Devices Conventional Current Version, Ninth Edition, Pearson.
  36. Mahmoud, S. A. and Soliman, E. A. , 2011, Low voltage current conveyor-based field programmable analog array, Journal of Circuits, Systems, and Computers, Vol. 20, 8 1677-1701.
  37. http://www. anadigm. com-dynamically programmable Analog Signal Processor or Field Programmable Analog Array.
Index Terms

Computer Science
Information Sciences

Keywords

Current conveyors DVCC impedance converter