Abstract

In path factorization, Ushio [1] gave the necessary and sufficient conditions for P_k-design when k is odd. P_{2p}-factorization of a complete bipartite graph for p an integer, was studied by Wang [2]. Further, Beiling [3] extended the work of Wang [2], and studied P_{2k}-factorization of complete bipartite multigraphs. For even value of k in P_k-factorization the spectrum problem is completely solved [1, 2, 3]. However, for odd value of k i.e. P_3, P_5, P_7, P_9 and $P_{(4k-1)}$, the path factorization have been studied by a number of researchers [4, 5, 6, 7, 8]. The necessary and sufficient conditions for the existence of P_3-factorization of symmetric complete bipartite digraph were given by Du B [9]. Earlier we have discussed the necessary and sufficient conditions for the existence of P_5 and P_7-factorization of symmetric complete bipartite digraph [10, 11]. Now, in the present paper, we give the necessary and sufficient conditions for the existence of P_9-factorization of symmetric complete bipartite digraph, K^*_m,n.

References

P9-factorization of Symmetric Complete Bipartite Digraph

- Harary F: Graph theory. Adison Wesley. Massachusetts, 1972.

Index Terms

Computer Science Applied Mathematics

Keywords

Complete bipartite Graph Factorization of Graph Spanning Graph