Abstract

The Multiresolution visualization and interactive of three-dimensional mesh becomes a very active topic in recent years, which makes a state of art rich that it devoted this article. With the rapid development has seen computer graphics, three-dimensional objects become widely used in daily life. Given the large size of the mesh, it becomes very difficult to load them all into memory and transmit them on the internet. The segmentation techniques and multiresolution compression are used to reply these requirements. Indeed, in this paper, it proposed a new approach to multiresolution visualization based on a combination of segmentation and multiresolution mesh compression. For this, it proposed a new segmentation method that benefits the organization of faces of the mesh followed by a progressive local compression of regions of mesh to ensure the refinement local of the three-dimensional object.

References

- Hugues Hoppe: "View-Dependent Refinement of Progressive Meshes";
Interactive Multiresolution Visualization of 3D Mesh

Eurographics '99, Short papers and demos, p. 239-242, 1999.
- Müller, K. and S. Havemann: “Subdivision Surface Tessellation on the Fly using a Versatile Mesh data Structure.”
- S. Lanquetin: “Etude des surfaces de subdivision: intersectio, précision et profondeur de subdivision.”
Thèse de doctorat, Université de Bourgogne, 2004.
- Gobbetti e., Marton f.: Far voxels: A multiresolution framework for interactive rendering of huge complex 3d models on commodity graphics platforms.
- A. Shamir, “A survey on mesh segmentation techniques.”
In SMI '06 : Proceedings of the IEEE
Interactive Multiresolution Visualization of 3D Mesh

Interactive Multiresolution Visualization of 3D Mesh

Index Terms

- Computer Science
- Image Processing

Keywords

- 3D mesh
- Interactive visualization
- 3D segmentation
- Multiresolution compression
- Refinement local
- Selective visualization