Abstract

ECG analysers have proved out to be very useful in the analysis of human heart beat and subsequently diagnosis of various human cardiovascular diseases. The design of these real time ECG analyzers is difficult since real time environment is not always available for the performance analysis of these analyzers. The existing ECG analyser makers are making use of expensive data restitution boards which generate real time signals for the performance analysis of ECG analyzers, which make the system even more expensive. Thus in this paper a virtual patient is proposed, which creates a real environment for the analysis of ECG analyzers by generating real time ECG signals from the database of real acquired data, by making use of simple Microcontroller. The signals generated by Microcontroller are seen as real signals coming from the instantaneous heart activities by the analyzer. The use of Microcontroller makes the system cost efficient and can be utilized as a test bench for the study of ECG signals at the laboratory level.

References

- Guy Lamarque, Philippe Ravier, and Cedric Dumez-Viou, "A New Concept of
Virtual Patient for Real – Time ECG Analyzers; IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011
- Adam Jós´ko and Remigiusz J. Rak, Effective Simulation of Signals for Testing ECG Analyzer; IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 54, NO. 3, JUNE 2005
- Patrick E. McSharry, Gari D. Clifford, Lionel Tarassenko, and Leonard A. Smith; A Dynamical Model for Generating Synthetic Electrocardiogram Signals; IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 3, MARCH 2003
- George B. Moody and Roger G. Mark, The Impact of the MIT-BIH Arrhythmia Database; IEEE ENGINEERING IN MEDICINE AND BIOLOGY, May-June 2001
- Emran Mohammad Abu Anas?, Md. Iftekhar Hossain, Md. Shah Afran and Shehrin Sayed; Compression of ECG signals exploiting correlation between ECG cycles; IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 3, MARCH 2010
- Boqiang Huang, Yuanyuan Wang*, Senior Member, IEEE, and Jianhua Chen; 2-D Compression of ECG Signals Using ROI Mask and Conditional Entropy Coding; IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 4, APRIL 2009
- Hyejung Kim, Student Member, IEEE, Refet Firat Yazicioglu, Patrick Merken, Chris Van Hoof, Member, IEEE, and Hoi-Jun Yoo, Fellow, IEEE; ECG Signal Compression and Classification Algorithm With Quad Level Vector for ECG Holter System;
- A. Dani and Y. Kanetkar; Go Embedded; First Edition 2008

Index Terms
Computer Science Bio-medical Sciences

Keywords
Signal compression ECG signal Database arrhythmias generation Holter monitoring