In Integrated circuits a gargantuan portion of on chip power is expended by clocking systems, which comprises of timing elements such as flip-flops, latches and clock distribution network. These elements absorb approximately 30% to 60% of the total power dissipation in the system. In order to design high performance and power efficient circuits a scrupulous approach should be adopted to reduce the power consumed by flip-flops and latches. In this paper various power efficient flip-flops with low power clock distribution network are examined. Among these flip-flops low Power Clocked Pass Transistor Flip-Flop (LCPTFF) consumes least power than Clocked Pair Shared Flip-Flop (CPSFF), Conditional Data Mapping Flip-Flop and Conditional Discharge Flip-Flop (CDFF). We propose a novel Low Power Forced Stack Clocked Pass Transistor Flip-Flop (LP-FSCPTFF) which reduces the power consumption by approximately 30.
Designing a Novel Power Efficient D-Flip-Flop using Forced Stack Technique

1% to 83.93% at 500MHz and 25.5% to 90.1% at 750MHz as compared to original LCPTFF. The simulation is carried out on Tanner EDA v13.0 at 90nm on different voltages at 500MHz and 750MHz. The temperature variation of different flip-flops is also shown at 5 °C, 25 °C and 50 °C.

References

- S H Kim, Vincent J Mooney; Sleepy Keeper: a New Approach to Low-leakage Power VLSI Design; Very Large Scale integration,2006 IFIP International Conference
- F. Mohammad, L. A. Abhilasand P. Srinivas; A new parallel counter architecture with reduced transistor count for power and area optimization; international conference on Electrical and Electronics Engineering, Sept., 2012.
Designing a Novel Power Efficient D-Flip-Flop using Forced Stack Technique

Index Terms

Computer Science
Integrated Circuits

Keywords

Flip-Flops Forced Stack Approach Low power integrated circuits