Abstract

In this study, coplanar wave (CPW) feed microstrip antennas are designed to form dual frequency by inserting single stub. Bandwidths of the microstrip printed antennas for both upper and lower frequencies are represented in this study by considering the simulated and experimental results. For each size of T-matching network and each permittivity values are varied and effects of these variations are analyzed. The presented printed antennas in literature which have the same shape and the same feeding types are compared and results are presented. Besides presenting those, in a different way from the literature, this method is proposed to estimate the bandwidths of those antennas. The results of this study will guide researchers who want to predict the resonance frequencies and bandwidth of mentioned antennas before producing the antenna so that they will handle the problem by saving the time and estimating the bandwidth before production.

References
- S. Can, Computation of Resonant Frequency of Dual Band Triangular Patch Antenna, Master's Thesis in Electrical & Electronics Engineering, Atılım University, Turkey, July 2011.
- E. Aydin, S. Can, "Operating frequency calculation of a shorting pin loaded ETMA," Microwave and Optical Technology Letters, 2012, vol. 54, no. 6, 1 pp. 432–1435.

Index Terms

Computer Science

Neural Networks

Keywords

CPW T-matching network printed antenna artificial neural networks