Abstract

This paper presents an educational data mining model for predicting student performance in programming courses. Identifying variables that predict student programming performance may help educators. These variables are influenced by various factors. The study engage factors like students’ mathematical background, programming aptitude, problem solving skills, gender, prior experience, high school mathematics grade, locality, previous computer programming experience, and e learning usage. The proposed model includes three phases; data preprocessing, attribute selection and rule extraction algorithm.

References

An Educational Data Mining Model for Predicting Student Performance in Programming Course

- S. Charles, L. Arockiam, and V. Kumar, "Deriving Association between learning behavior and programming skills", Computer Networks and Information Technologies Communications in Computer and Information Science, Volume 142, 2011, pp 96-103.
- Luis de-la-Fuente-Valentín, Abelardo Pardo, Carlos Delgado Kloos, "Addressing
drop-out and sustained effort issues with large practical groups using an automated delivery and assessment system,

- Douglas A. Kranch, "Teaching the novice programmers: A study of instructional sequences and perception,

- Jens Bennedsen, Michael E. Caspersen, "Failure rates in introductory programming,


- Richard Bornat, Saeed dehnadi, and , "Mental models, consistency and programming aptitude,


- Wilfred W. F. Lau, Allan H. K, "Modelling programming performance: Beyond the influence of learner characteristics,

- A. T. Chamillard, "Using Student Performance Predictions in a Computer Science Curriculum",

- Sally Fincher et al. , "Programmed to succeed?: A multi-national, multi-institutional study of introductory programming courses,

- Carl Farrell, "PREDICTING (AND CREATING) SUCCESS IN CS1",

- Markku Tukiainen and Eero Mönkkönen, "Programming aptitude testing as a prediction of learning to program,

- Valerie J. Shute, "Who is likely to acquire programming skills?,

- Carl Farrell, "PREDICTING (AND CREATING) SUCCESS IN CS1",

- Saeed Dehnadi, "A Cognitive Study of Learning to Program in Introductory Programming Courses",

- Y. B. -D. Kolikant, S. Pollack, "Improving mathematically oriented programming skills in computer science studies",


- Doane, William E. J, "Predicting student performance in introductory computer programming courses,

- Stanley TenEyck Schuyler, "Using Problematizing Ability to Predict Student
performance In A First Course In Computer Programming”, Robert Morris University, Copyright © Stanley TenEyck Schuyler 2008.

Index Terms

Computer Science Artifical Intelligence

Keywords

Data Mining Student Performance Programming Course Rule Extraction