CFP last date
20 May 2024
Reseach Article

Fuzzy Analogical Gates Approach for Heat Exchangers Networks

by M. H. Hussein, H. Moselhy, S. Aly, M. E. Awad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 73 - Number 21
Year of Publication: 2013
Authors: M. H. Hussein, H. Moselhy, S. Aly, M. E. Awad
10.5120/13015-9646

M. H. Hussein, H. Moselhy, S. Aly, M. E. Awad . Fuzzy Analogical Gates Approach for Heat Exchangers Networks. International Journal of Computer Applications. 73, 21 ( July 2013), 1-8. DOI=10.5120/13015-9646

@article{ 10.5120/13015-9646,
author = { M. H. Hussein, H. Moselhy, S. Aly, M. E. Awad },
title = { Fuzzy Analogical Gates Approach for Heat Exchangers Networks },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 73 },
number = { 21 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume73/number21/13015-9646/ },
doi = { 10.5120/13015-9646 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:40:41.679812+05:30
%A M. H. Hussein
%A H. Moselhy
%A S. Aly
%A M. E. Awad
%T Fuzzy Analogical Gates Approach for Heat Exchangers Networks
%J International Journal of Computer Applications
%@ 0975-8887
%V 73
%N 21
%P 1-8
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a systematic method for synthesis of heat exchanger networks, the proposed algorithm consists of three sequential steps to select the optimal approach temperature: i) Estimation of normalized minimum approach temperature, normalized minimum hot utility and normalized minimum cold utility. ii) Fuzzy analogical gates network. iii) Selection of the best weight index. Two analogical gates (symmetric and asymmetric) are employed. The symmetric gate (AND gate) inputs are the normalized minimum approach temperature and normalized hot utility. The asymmetric gate (Invoke gate) inputs are the output of the AND gate and the normalized cold utility. The proposed method has been applied for four problems well-known in published literature. The results of these case studies show that the present strategy is both robust and accurate in finding out global optimum in comparison with previous works, characterized by its simplicity and can be implemented by hand calculations.

References
  1. Furman, K. C. , and Sahinidis, N. V. "A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century". Industrial and Engineering Chemistry Research, 41, (2335–2370), 2002.
  2. Ravagnani, M. A. S. S. , Silva, A. P. , and Andrade, A. L. "Detailed equipment design in heat exchanger networks synthesis and optimization". Applied Thermal Analysis, Issue 23, (141–151), 2003.
  3. Gundersen, T. , and Grossmann, I. E. "Improved optimization strategies for automated heat exchanger network synthesis through physical insights". Comput. Chem. Eng. , 14, (925-934), 1990.
  4. Linnhoff, B. , and Flower, J. "Synthesis of heat exchanger networks. I, Systematic generation of energy optimal networks". AIChE Journal, 244, (633–642), 1978.
  5. Linnhoff, B. , Mason, D. R. , and Wardle, I. "Understanding heat exchanger networks". Comput. Chem. Eng. ,3, (295–302), 1979.
  6. Linnhoff, B. , Towsend, D. W. , Boland, D. , Hewitt, G. F. , Thomas, B. E. A. , Guy, A. R. , and Marsland, R. H. "A user guide on process integration for the efficient use of energy". UK: The Institute of Chemical Engineers. 1982. (I edition)
  7. Linnhoff, B. , and Hindmarsh, E. "The pinch design method for heat exchanger networks". Chemical Engineering Science, 38, (745–763), 1983.
  8. Linnhoff, B. "Pinch analysis: A state-of-the-art overview". Transactions of the IChemE, 71Part A, (503–522), 1993.
  9. Linnhoff, B. "Use pinch analysis to knock down capital costs and emissions". Chemical Engineering Progress, (32–57). 1994.
  10. Grossmann, I. E. , Caballero, J. A. , and Yeomans, H. "Advances in mathematical programming for the synthesis of process systems". Latin American Applied Research, 30,(263–284), 2000.
  11. Cerda, J. , and Westerberg, A. W. "Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulation". Chemical Engineering Science, 38, (1723-1730), 1983.
  12. Colberg, R. D. , and Morari, M. "Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients". Comput. Chem. Eng. 14, (17-23), 1990.
  13. Floudas, C. A. , Ciric, A. R. , and Grossmann, I. E. "Automatic synthesis of optimum heat exchanger network configurations". AIChE Journal, 32, (276-286), 1986.
  14. Papoulias, S. A. , and Grossmann, I. E. "structural optimizations approach in process synthesis. Part II. Heat recovery networks". Comput. Chem. Eng. , 7, (707-716), 1983.
  15. Bjork, K. , and Westerlund, T. "Global optimization for heat exchanger network synthesis problems with and without the isothermal mixing assumption". Comput. Chem. Eng. , 26, (1581–1593), 2002.
  16. Ciric, A. R. , and Floudas, C. A. "Heat exchanger network synthesis without decomposition". Comput. Chem. Eng. , 15, 385–396. 1991.
  17. Quesada, I. E. , and Grossmann, I. E. "Global optimization algorithm for heat exchanger networks". Industrial Engineering Chemistry Research, 32, 487. 1993.
  18. Yee, T. F. , and Grossmann, I. E. "Simultaneous optimization models for heat integration. II. Heat exchanger network synthesis". Comput. Chem. Eng. , 14, 1165. 1990.
  19. Zamora, J. , and Grossmann, I. E. "A global optimization algorithm for the synthesis of heat exchanger networks with no stream splits". Comput. Chem. Eng. , 22, 367–384. 1998.
  20. Badreddin E. , "Fuzzy relations for behavior-fusion of mobile robots". , Proc. IEEE conf. on Robotics and Automation, San Diego, California,(1994), pp. 8-13.
  21. Aly S. , "Fuzzy analogical gates for separation sequence synthesis". Chem. Eng. Proc, 36 (1997) 209-217.
  22. Shenoy, U. V. ,''Heat Exchanger Network Synthesis' Process Optimization by Energy and Resource Analysis. Gulf Publishing Company Houston, Texas.
  23. Hall S. G. , Ahmed S. and Smith R. , Capital Cost Targets for Heat Exchangers Networks Comprising Mixed Materials of Construction, Pressure Ratings and Exchangers Types, Computers Chem. Engng. ,14,319 (1990)
  24. Ian. C. Kemp. , ''Pinch Analysis and Process integration A user guide on process integration for the efficient use of energy'' (2007). , (II edition) British Library.
  25. Pettersson, F. (2005). Synthesis of large-scale heat exchanger networks using a sequential match reduction approach. Computers & Chemical Engineering, 29(5), 993–1007.
  26. Ahmad, S. (1985). Heat exchanger networks: Cost tradeoffs in energy and capital. Ph. D. Thesis. UK: UMIST Manchester.
  27. Ravagnani, M. A. S. S. , Silva, A. P. , Arroyo, P. A. , & Constantino, A. A. (2005). Heat exchanger network synthesis and optimisation using Genetic Algorithm. Applied Thermal Engineering, 25, 1003–1017.
  28. Hojjati, Mahmoud Reza and Omidkhah,Mohammad Reza,. '' Cost Effective Heat Exchanger Network Design with Mixed Materials of Construction'' Iran. J. Chem. & Chem. Eng. vol. 23,No. 2,2004
  29. Jegede,F. O. , Polley, G. T. , ''Capital Cost Targets for Networks with non-uniform Heat Exchanger Specifications'' Comput. Chem. Eng. , 16, (5), 477 (1992).
  30. Linnhoff, B. , & Ahmad, S. (1990). Cost optimum heat exchanger networks. 1. Minimum energy and capital using simple models for capital cost. Computers & Chemical Engineering, 14(7), 729–750
  31. Zhu, X. X. , O'Neill, B. K. , Roach, J. R. , & Wood, R. M. (1995). A method for automated heat exchanger synthesis using block decomposition and non-linear optimization. Chemical Engineering Research & Design Part A, 73(11), 919–930.
  32. Lewin, D. R. (1998). A Generalized method for HEN synthesis using stochastic optimisation. II. The synthesis of cost-optimal networks. Computers & Chemical Engineering, 22(10), 1387–1405.
  33. Lewin, D. R. , Wang, H. , & Shalev, O. (1998). A Generalized method for HEN synthesis using stochastic optimization. I. General framework and MER optimal synthesis. Computers&Chemical Engineering, 22(10), 1503–1513.
  34. Krishna M. Yerramsetty , C. V. S. Murty , Synthesis of cost-optimal heat exchanger networks using differential evolution, Computers and Chemical Engineering 32 (2008) 1861–1876
  35. Azeez O. S , Isafiade A. J. ,. Fraser D. M. , ''Supply and Target based superstructure synthesis of heat and mass exchanger networks''. Chemical Engineering Research & Design Part A, 90 (2012), 266 – 287
Index Terms

Computer Science
Information Sciences

Keywords

Heat Exchanger Networks Fuzzy Analogical Gates Energy saving Pinch Technology