Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Using Fuzzifiers to solve Word Sense Ambiguation in Arabic Language

International Journal of Computer Applications
© 2013 by IJCA Journal
Volume 79 - Number 2
Year of Publication: 2013
Madeeh Nayer El-gedawy

Madeeh Nayer El-gedawy. Article: Using Fuzzifiers to solve Word Sense Ambiguation in Arabic Language. International Journal of Computer Applications 79(2):1-8, October 2013. Full text available. BibTeX

	author = {Madeeh Nayer El-gedawy},
	title = {Article: Using Fuzzifiers to solve Word Sense Ambiguation in Arabic Language},
	journal = {International Journal of Computer Applications},
	year = {2013},
	volume = {79},
	number = {2},
	pages = {1-8},
	month = {October},
	note = {Full text available}


Text mining techniques confront many challenges when dealing with the Arabic language including lexical disambiguation because Arabic is a highly inflectional and derivational language, most of the Arabic texts are devoid of diacritics especially Modern Standard Arabic (MSA), thus, it is a must to depend on the ambiguous word context under study. Two fuzzy logic classifiers have been built and compared to a supervised corpus-based Naïve Bayes classifier. The study concludes that the results that have been obtained from our fuzzy logic classifiers are more accurate and promising.


  • Ali Farghaly, Khaled Shaalan (2009). "Arabic Natural Language Processing: Challenges and Solutions". ACM Transactions on Asian Language Information Processing (TALIP) , Volume 8 Issue 4, Article No. 14, NY, USA.
  • Roberto Navigli (2009). "Word sense disambiguation: A survey". ACM Computing Surveys (CSUR), Volume 41 Issue 2, Article No. 10, New York, USA.
  • Ronen Feldman, James Sanger (2006). "Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data". Cambridge University Press, NY, USA.
  • Mehdi Khosrow-Pour (2008). "Encyclopedia of Information Science and Technology, 2 edition". Information Science Reference - Imprint of: IGI Publishing Hershey, PA.
  • Zhou Yao, Cao Ze-wen (2011). "Research on the Construction and Filter Method of Stop-word List in Text Preprocessing". Proceedings of the 2011 Fourth International Conference on Intelligent Computation Technology and Automation, Volume 1.
  • Feng Zou, Fu Lee Wang, Xiaotie Deng, Song Han, Lu Sheng Wang (2006). "Automatic construction of Chinese stop word list". Proceedings of the 5th WSEAS international conference on applied computer science, Pages: 1009-1014.
  • A. Alajmi, E. M. Saad, R. R. Darwish (2012). "Toward an ARABIC Stop-Words List Generation". International Journal of Computer Applications (0975 – 8887), Volume 46, Number 8.
  • A. Nwesri (2008). "Effective retrieval techniques for Arabic text". PhD Thesis, School of Computer Science and Information Technology, RMIT University.
  • Mohamed I. Eldesouki, Waleed M. Arafa, Kareem M. Darwish (2009). "Stemming techniques of Arabic Language: Comparative Study from the Information Retrieval Perspective". The Egyptian Computer Journal, Pages: 30-49.
  • Samhaa R. El-Beltagy, Ahmed Rafea (2011). "An accuracy-enhanced light stemmer for arabic text". ACM Transactions on Speech and Language Processing (TSLP), Volume 7, Issue 2, Article No. 2, New York, USA.
  • Jinxi Xu, W. Bruce Croft (1998). "Corpus-based stemming using cooccurrence of word variants". ACM Transactions on Information Systems (TOIS), Volume 16, Issue 1, Pages: 61 - 81, New York, USA.
  • Shereen Khoja, R. Garside (1999). "Stemming Arabic Text". Tech. rep. Computing Department, Lancaster University, Lancaster, U. K.
  • K. Taghva, R. Elkhoury, J. S. Coombs (2005). "Arabic Stemming without a Root Dictionary". ITCC 1, Pages: 152-157.
  • R. AI-Shalabi, G. Kannan, and H. AI-Serhan (2003). "New Approach for extracting Arabic roots". In Proc of 2003 International Arab conference on Information Technology, Alexandria, Pages: 42-59.
  • D. Yarowsky (1993). "One sense per collocation". In Proceedings of the ARPA Workshop on Human Language Technology, Princeton, Pages: 266-267.
  • Roberto Navigli (2009). "Word sense disambiguation: A survey". Computing Surveys (CSUR), Volume 41, Issue 2, Article No. 10, New York, USA.
  • Igor A. Bolshakov, Alexander Gelbukh (2004). "A very large dictionary with paradigmatic, syntagmatic, and paronymic links between entries". Proceedings of the Workshop on Enhancing and Using Electronic Dictionaries Publisher: Association for Computational Linguistics, Pages: 53-56, Stroudsburg, USA.
  • Robert Krovetz, W. Bruce Croft (1992). "Lexical ambiguity and information retrieval". ACM Transactions on Information Systems (TOIS), Volume 10, Issue 2, Pages: 115 - 141, New York, USA.
  • C. Leacock, M. Chodorow (1998). "Combining local context and WordNet sense similarity for word sense identification". The MIT Press, Pages: 265-283.
  • R. Beckwith, C. Fellbaum, D. Gross, G. A. Miller (1991). "WordNet: A Lexical Database Organized on Psycholinguistic Principles". Hillsdale, Erlbaum.
  • W. J. Black, S. Elkateb (2004). "A Prototype English Arabic Dictionary Based on WordNet". Proceedings of 2nd Global WordNet Conference, GWC2004, Czech Republic, Pages: 67-74.
  • Edda Leopold, Jörg Kindermann (2002). "Text Categorization with Support Vector Machines. How to Represent Texts in Input Space". Journal OFMachine Learning, Volume 46, Issue 1-3, Pages: 423 - 444, MA, USA.
  • Chun-Ling Chen, Frank S. Tseng, Tyne Liang (2009). "An Integration of Fuzzy Association Rules and WordNet for Document Clustering". Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Pages: 147-159, Berlin, Heidelberg.
  • Goncalo Oliveira, Paulo Gomes (2011). "Automatic Discovery of Fuzzy Synsets from Dictionary De?nitions". Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Pages: 1801-1806.
  • Aitor Almeida, Diego López-de-Ipiña (2012). "Assessing Ambiguity of Context Data in Intelligent Environments: Towards a More Reliable Context Managing System". the 5th International Symposium on Ubiquitous Computing and Ambient Intelligence.
  • Balamurugan, Senthamarai Kannan (2010). "A Framework for Computing Linguistic Hedges in Fuzzy Queries". The International Journal of Database Management Systems, Volume 2, Number 1.
  • Bhawani Selvaretnam, Mohammed Belkhatir (2012). "Natural language technology and query expansion: issues, state-of-the-art and perspectives". Journal of Intelligent Information Systems, Volume 38, Issue 3, Pages: 709-740, MA, USA.
  • Zhiguo Gong, Chan Wa Cheang, U Leong Hou (2005). "Web query expansion by wordnet". Proceedings of the 16th international conference on Database and Expert Systems Applications, Pages: 166-175, Berlin, Heidelberg.
  • J. Bhogal, A. Macfarlane, P. Smith (2007). "A review of ontology based query expansion". Journal of Information Processing and Management: an International Journal, Volume 43, Issue 4, Pages: 866-886, Tarrytown, USA.
  • Jiuling Zhang, Beixing Deng, Xing Li (2009). "Concept Based Query Expansion Using WordNet". Proceedings of the 2009 International e-Conference on Advanced Science and Technology, Pages: 52-55, IEEE Computer Society Washington, USA.
  • Zhiguo Gong, Chan Wa Cheang, Leong Hou U (2006). "Multi-term web query expansion using wordnet". Proceedings of the 17th international conference on Database and Expert Systems Applications, Pages: 379-388, Berlin, Heidelberg.
  • William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007). "Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 edition". Cambridge University Press, New York, USA.
  • D. Zelterman (1987). "Parameter estimation in the generalized logistic distribution". Computational Statistics & Data Analysis, Volume 5, Issue 3, Pages: 177 - 184, Amsterdam, The Netherlands.