Abstract

Most watermarking algorithms are either robust watermarking for copyright protection or fragile watermarking for tamper detection. This paper proposes a fragile video watermarking algorithm that has the ability to detect tamper in spatial domains. The original video frame is converted from RGB color space into YCbCr color space, then the chrominance component Cb is partitioned into non-overlapping blocks of pixels according to the number of bits of the original watermark. The watermark bits are embedded using a mathematical rule for each block separately. A detailed study for the applicability of this algorithm to content authentication is conducted. Experimental results reveal that the proposed algorithm achieves a low computation cost and high detection rate against a wide range of tampering attacks such as Filtering, Non-Geometric Transformation and Geometric Transformation.

References

- Cox, I. J., Miller, M. L., and Bloom, J. A., "Digital watermarking and

- Paul, R. T. , "Review of robust video watermarking techniques", IJCA Special Issue on Computational Science - New Dimensions & Perspectives NCCSE, No. 3, PP: 90-95, 2011.

A Fragile Video Watermarking Algorithm for Content Authentication based on Block Mean and Modulation Factor.

Index Terms

Computer Science
Security

Keywords

Content Authentication
Fragile Video Watermarking
Tampering Attacks
Modulation Factor.