Abstract

An efficient shape-based recognition system of U. S. speed limit road signs is presented in this paper. The proposed system accomplishes speed sign detection and recognition processes using three main stages, namely, geometrical-based detection of rectangular road signs, shape-based segmentation and feature extraction, and pattern classification using a K-nearest neighbor classifier (KNN). Twenty shape descriptors are computed for the most discriminative numerals of each detected sign. The proposed system is invariant to scale, rotation, and partial occlusion. The proposed system has been tested in different conditions, including sunny, cloudy, and rainy weather, and the experimental results on 195 speed signs reveals the efficiency of the proposed shape pattern segmentation and feature extraction methods.

References

- P. Gil-Jime´nez, S. Maldonado-Basco´n, H. Go´mez-Moreno, S. Lafuente-Arroyo, F. Lo´pez-Ferreras, ¨Traffic sign shape classification and localization based on the
normalized FFT of the signature of blobs and 2D homographies.

- Pedro Gil Jiménez, Saturnino Maldonado Bascoñ, Hilario Gómez Moreno, Sergio Lafuente Arroyo, Francisco Lopez Ferreras, "Traffic sign shape classification and localization based on the normalized FFT of the signature of blobs and 2D homographies.

- J. F. Khan, S. M. A. Bhuiyan, R. R. Adhami, "Image Segmentation and Shape Analysis for Road-Sign Detection.

- Abukhait, J.; Abdel-Qader, I.; Jun-Seok Oh; Abdulayyeh, O., "Road sign detection and shape recognition invariant to sign defects.

- N. Barnes, A. Zelinsky and L. S. Fletcher, "Real-Time Speed Sign Detection Using the Radial Symmetry Detector.

Speed Sign Recognition using Shape-based Features

Index Terms

Computer Science Pattern Recognition

Keywords

Speed Sign Recognition Morphology-based Features Feature Extraction
Classification.